These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
278 related articles for article (PubMed ID: 24940801)
41. CALINCA-A Novel Pipeline for the Identification of lncRNAs in Podocyte Disease. Talyan S; Filipów S; Ignarski M; Smieszek M; Chen H; Kühne L; Butt L; Göbel H; Hoyer-Allo KJR; Koehler FC; Altmüller J; Brinkkötter P; Schermer B; Benzing T; Kann M; Müller RU; Dieterich C Cells; 2021 Mar; 10(3):. PubMed ID: 33804736 [TBL] [Abstract][Full Text] [Related]
42. Regulation of TRPC6 ion channels in podocytes - Implications for focal segmental glomerulosclerosis and acquired forms of proteinuric diseases. Szabó T; Ambrus L; Zákány N; Balla G; Bíró T Acta Physiol Hung; 2015 Sep; 102(3):241-51. PubMed ID: 26551740 [TBL] [Abstract][Full Text] [Related]
43. Podocyte-Specific Deletion of Yes-Associated Protein Causes FSGS and Progressive Renal Failure. Schwartzman M; Reginensi A; Wong JS; Basgen JM; Meliambro K; Nicholas SB; D'Agati V; McNeill H; Campbell KN J Am Soc Nephrol; 2016 Jan; 27(1):216-26. PubMed ID: 26015453 [TBL] [Abstract][Full Text] [Related]
44. In situ evaluation of podocytes in patients with focal segmental glomerulosclerosis and minimal change disease. da Silva CA; Monteiro MLGDR; Araújo LS; Urzedo MG; Rocha LB; Dos Reis MA; Machado JR PLoS One; 2020; 15(11):e0241745. PubMed ID: 33147279 [TBL] [Abstract][Full Text] [Related]
45. Primary Focal Segmental Glomerulosclerosis Plasmas Increase Lipid Droplet Formation and Perilipin-2 Expression in Human Podocytes. den Braanker DJW; Maas RJH; van Mierlo G; Parr NMJ; Bakker-van Bebber M; Deegens JKJ; Jansen PWTC; Gloerich J; Willemsen B; Dijkman HB; van Gool AJ; Wetzels JFM; Rinschen MM; Vermeulen M; Nijenhuis T; van der Vlag J Int J Mol Sci; 2022 Dec; 24(1):. PubMed ID: 36613637 [TBL] [Abstract][Full Text] [Related]
46. Compound effects of aging and experimental FSGS on glomerular epithelial cells. Schneider RR; Eng DG; Kutz JN; Sweetwyne MT; Pippin JW; Shankland SJ Aging (Albany NY); 2017 Feb; 9(2):524-546. PubMed ID: 28222042 [TBL] [Abstract][Full Text] [Related]
47. Podocyte-derived soluble RARRES1 drives kidney disease progression through direct podocyte and proximal tubular injury. Feng Y; Sun Z; Fu J; Zhong F; Zhang W; Wei C; Chen A; Liu BC; He JC; Lee K Kidney Int; 2024 Jul; 106(1):50-66. PubMed ID: 38697478 [TBL] [Abstract][Full Text] [Related]
48. The Hippo pathway regulator KIBRA promotes podocyte injury by inhibiting YAP signaling and disrupting actin cytoskeletal dynamics. Meliambro K; Wong JS; Ray J; Calizo RC; Towne S; Cole B; El Salem F; Gordon RE; Kaufman L; He JC; Azeloglu EU; Campbell KN J Biol Chem; 2017 Dec; 292(51):21137-21148. PubMed ID: 28982981 [TBL] [Abstract][Full Text] [Related]
50. Cre recombinase toxicity in podocytes: a novel genetic model for FSGS in adolescent mice. Frahsek M; Schulte K; Chia-Gil A; Djudjaj S; Schueler H; Leuchtle K; Smeets B; Dijkman H; Floege J; Moeller MJ Am J Physiol Renal Physiol; 2019 Nov; 317(5):F1375-F1382. PubMed ID: 31588799 [TBL] [Abstract][Full Text] [Related]
51. The Calcium-Dependent Protease Calpain-1 Links TRPC6 Activity to Podocyte Injury. Verheijden KAT; Sonneveld R; Bakker-van Bebber M; Wetzels JFM; van der Vlag J; Nijenhuis T J Am Soc Nephrol; 2018 Aug; 29(8):2099-2109. PubMed ID: 29954830 [TBL] [Abstract][Full Text] [Related]
52. Podocyte autophagic activity plays a protective role in renal injury and delays the progression of podocytopathies. Zeng C; Fan Y; Wu J; Shi S; Chen Z; Zhong Y; Zhang C; Zen K; Liu Z J Pathol; 2014 Oct; 234(2):203-13. PubMed ID: 24870816 [TBL] [Abstract][Full Text] [Related]
53. Up-regulation of the homophilic adhesion molecule sidekick-1 in podocytes contributes to glomerulosclerosis. Kaufman L; Potla U; Coleman S; Dikiy S; Hata Y; Kurihara H; He JC; D'Agati VD; Klotman PE J Biol Chem; 2010 Aug; 285(33):25677-85. PubMed ID: 20562105 [TBL] [Abstract][Full Text] [Related]
54. The long noncoding RNA LOC105374325 causes podocyte injury in individuals with focal segmental glomerulosclerosis. Hu S; Han R; Shi J; Zhu X; Qin W; Zeng C; Bao H; Liu Z J Biol Chem; 2018 Dec; 293(52):20227-20239. PubMed ID: 30389788 [TBL] [Abstract][Full Text] [Related]
55. Partial podocyte replenishment in experimental FSGS derives from nonpodocyte sources. Kaverina NV; Eng DG; Schneider RR; Pippin JW; Shankland SJ Am J Physiol Renal Physiol; 2016 Jun; 310(11):F1397-413. PubMed ID: 27076646 [TBL] [Abstract][Full Text] [Related]
56. Any value of podocyte B7-1 as a biomarker in human MCD and FSGS? Novelli R; Gagliardini E; Ruggiero B; Benigni A; Remuzzi G Am J Physiol Renal Physiol; 2016 Mar; 310(5):F335-41. PubMed ID: 26697986 [TBL] [Abstract][Full Text] [Related]
57. Disease-causing mutation in α-actinin-4 promotes podocyte detachment through maladaptation to periodic stretch. Feng D; Notbohm J; Benjamin A; He S; Wang M; Ang LH; Bantawa M; Bouzid M; Del Gado E; Krishnan R; Pollak MR Proc Natl Acad Sci U S A; 2018 Feb; 115(7):1517-1522. PubMed ID: 29378953 [TBL] [Abstract][Full Text] [Related]
58. Protective Role of the M-Sec-Tunneling Nanotube System in Podocytes. Barutta F; Kimura S; Hase K; Bellini S; Corbetta B; Corbelli A; Fiordaliso F; Barreca A; Papotti MG; Ghiggeri GM; Salvidio G; Roccatello D; Audrito V; Deaglio S; Gambino R; Bruno S; Camussi G; Martini M; Hirsch E; Durazzo M; Ohno H; Gruden G J Am Soc Nephrol; 2021 May; 32(5):1114-1130. PubMed ID: 33722931 [TBL] [Abstract][Full Text] [Related]