These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 24940822)

  • 1. Tuning of the HOMO-LUMO gap of donor-substituted symmetrical and unsymmetrical benzothiadiazoles.
    Misra R; Gautam P
    Org Biomol Chem; 2014 Aug; 12(29):5448-57. PubMed ID: 24940822
    [TBL] [Abstract][Full Text] [Related]  

  • 2. NIR-Absorbing 1,1,4,4-Tetracyanobuta-1,3-diene- and Dicyanoquinodimethane-Functionalized Donor-Acceptor Phenothiazine Derivatives: Synthesis and Characterization.
    Gupta PK; Khan F; Misra R
    J Org Chem; 2023 Oct; 88(20):14308-14322. PubMed ID: 37820059
    [TBL] [Abstract][Full Text] [Related]  

  • 3. NIR-Absorbing Donor-Acceptor Based 1,1,4,4-Tetracyanobuta-1,3-Diene (TCBD)- and Cyclohexa-2,5-Diene-1,4-Ylidene-Expanded TCBD-Substituted Ferrocenyl Phenothiazines.
    Poddar M; Misra R
    Chem Asian J; 2017 Nov; 12(22):2908-2915. PubMed ID: 28901716
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Unsymmetrical and Symmetrical Push-Pull Phenothiazines.
    Rout Y; Gautam P; Misra R
    J Org Chem; 2017 Jul; 82(13):6840-6845. PubMed ID: 28587457
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Aryl-substituted unsymmetrical benzothiadiazoles: synthesis, structure, and properties.
    Misra R; Gautam P; Mobin SM
    J Org Chem; 2013 Dec; 78(24):12440-52. PubMed ID: 24274961
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Near-IR absorbing 1,1,4,4-tetracyanobutadiene-functionalized phenothiazine sulfones.
    Sheokand M; Ji Tiwari N; Misra R
    Org Biomol Chem; 2023 May; 21(18):3896-3905. PubMed ID: 37165921
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Donor-acceptor ferrocenyl-substituted benzothiadiazoles: synthesis, structure, and properties.
    Misra R; Gautam P; Jadhav T; Mobin SM
    J Org Chem; 2013 May; 78(10):4940-8. PubMed ID: 23627745
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dicyanoquinodimethane-substituted benzothiadiazole for efficient small-molecule solar cells.
    Gautam P; Misra R; Sharma GD
    Phys Chem Chem Phys; 2016 Mar; 18(10):7235-41. PubMed ID: 26890875
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ultrafast Charge-Separation in Triphenylamine-BODIPY-Derived Triads Carrying Centrally Positioned, Highly Electron-Deficient, Dicyanoquinodimethane or Tetracyanobutadiene Electron-Acceptors.
    Gautam P; Misra R; Thomas MB; D'Souza F
    Chemistry; 2017 Jul; 23(38):9192-9200. PubMed ID: 28486754
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Near-IR Capturing N-Methylbenzene Sulfonamide-Phenothiazine Incorporating Strong Electron Acceptor Push-Pull Systems: Photochemical Ultrafast Carrier Dynamics.
    Kumar Gupta P; Das S; Misra R; D'Souza F
    Chemistry; 2024 May; 30(25):e202304313. PubMed ID: 38410932
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Donor-acceptor-acceptor (D-A-A) type 1,8-naphthalimides as non-fullerene small molecule acceptors for bulk heterojunction solar cells.
    Gautam P; Sharma R; Misra R; Keshtov ML; Kuklin SA; Sharma GD
    Chem Sci; 2017 Mar; 8(3):2017-2024. PubMed ID: 28451319
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Acetylene-derived strong organic acceptors for planar and nonplanar push-pull chromophores.
    Kivala M; Diederich F
    Acc Chem Res; 2009 Feb; 42(2):235-48. PubMed ID: 19061332
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Near-IR Intramolecular Charge Transfer in Strongly Interacting Diphenothiazene-TCBD and Diphenothiazene-DCNQ Push-Pull Triads.
    Yadav IS; Jang Y; Rout Y; Thomas MB; Misra R; D'Souza F
    Chemistry; 2022 May; 28(25):e202200348. PubMed ID: 35275434
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Triphenylamine-Merocyanine-Based D1-A1-π-A2/A3-D2 Chromophore System: Synthesis, Optoelectronic, and Theoretical Studies.
    Srinivasa Rao P; L Puyad A; V Bhosale S; V Bhosale S
    Int J Mol Sci; 2019 Apr; 20(7):. PubMed ID: 30939780
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synthesis and Characterization of Isoindigo-Based Push-Pull Chromophores.
    Rout Y; Chauhan V; Misra R
    J Org Chem; 2020 Apr; 85(7):4611-4618. PubMed ID: 32126766
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synthesis, Structure, and Significant Energy Gap Modulation of Symmetrical Silafluorene-Cored Tetracyanobutadiene and Tetracyanoquinodimethane Derivatives.
    Zhang Z; Gou G; Wan J; Li H; Wang M; Li L
    J Org Chem; 2022 Mar; 87(5):2470-2479. PubMed ID: 35080882
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synthesis, properties, and redox behavior of tetracyanobutadiene and dicyanoquinodimethane chromophores bearing two azulenyl substituents.
    Shoji T; Maruyama M; Shimomura E; Maruyama A; Ito S; Okujima T; Toyota K; Morita N
    J Org Chem; 2013 Dec; 78(24):12513-24. PubMed ID: 24304450
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Novel Benzothiadiazole-based Donor-Acceptor Systems: Synthesis, Ultrafast Charge Transfer and Separation Dynamics.
    Das S; Rout Y; Poddar M; Alsaleh AZ; Misra R; D'Souza F
    Chemistry; 2024 Jul; ():e202401959. PubMed ID: 38975973
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Excited-State Electron Transfer in 1,1,4,4-Tetracyanobuta-1,3-diene (TCBD)- and Cyclohexa-2,5-diene-1,4-diylidene-Expanded TCBD-Substituted BODIPY-Phenothiazine Donor-Acceptor Conjugates.
    Poddar M; Jang Y; Misra R; D'Souza F
    Chemistry; 2020 May; 26(30):6869-6878. PubMed ID: 32160356
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tetrathiafulvalene-benzothiadiazoles as redox-tunable donor-acceptor systems: synthesis and photophysical study.
    Pop F; Amacher A; Avarvari N; Ding J; Daku LM; Hauser A; Koch M; Hauser J; Liu SX; Decurtins S
    Chemistry; 2013 Feb; 19(7):2504-14. PubMed ID: 23292746
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.