These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 24940874)

  • 1. Neural extrapolation of motion for a ball rolling down an inclined plane.
    La Scaleia B; Lacquaniti F; Zago M
    PLoS One; 2014; 9(6):e99837. PubMed ID: 24940874
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hand interception of occluded motion in humans: a test of model-based vs. on-line control.
    La Scaleia B; Zago M; Lacquaniti F
    J Neurophysiol; 2015 Sep; 114(3):1577-92. PubMed ID: 26133803
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rolling Motion Along an Incline: Visual Sensitivity to the Relation Between Acceleration and Slope.
    Ceccarelli F; La Scaleia B; Russo M; Cesqui B; Gravano S; Mezzetti M; Moscatelli A; d'Avella A; Lacquaniti F; Zago M
    Front Neurosci; 2018; 12():406. PubMed ID: 29988401
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Body orientation contributes to modelling the effects of gravity for target interception in humans.
    La Scaleia B; Lacquaniti F; Zago M
    J Physiol; 2019 Apr; 597(7):2021-2043. PubMed ID: 30644996
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Visuomotor Interactions and Perceptual Judgments in Virtual Reality Simulating Different Levels of Gravity.
    La Scaleia B; Ceccarelli F; Lacquaniti F; Zago M
    Front Bioeng Biotechnol; 2020; 8():76. PubMed ID: 32133351
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Auditory-visual interactions in the perception of a ball's path.
    Ecker AJ; Heller LM
    Perception; 2005; 34(1):59-75. PubMed ID: 15773607
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of interception of moving targets by chimpanzees (Pan troglodytes) in an automated task.
    Iversen IH; Matsuzawa T
    Anim Cogn; 2003 Sep; 6(3):169-83. PubMed ID: 12761656
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mental imagery of gravitational motion.
    Gravano S; Zago M; Lacquaniti F
    Cortex; 2017 Oct; 95():172-191. PubMed ID: 28910670
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Internal models of target motion: expected dynamics overrides measured kinematics in timing manual interceptions.
    Zago M; Bosco G; Maffei V; Iosa M; Ivanenko YP; Lacquaniti F
    J Neurophysiol; 2004 Apr; 91(4):1620-34. PubMed ID: 14627663
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Grasping in One-Handed Catching in Relation to Performance.
    Cesqui B; Russo M; Lacquaniti F; d'Avella A
    PLoS One; 2016; 11(7):e0158606. PubMed ID: 27392041
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Extrapolation of visual motion for manual interception.
    Soechting JF; Flanders M
    J Neurophysiol; 2008 Jun; 99(6):2956-67. PubMed ID: 18436629
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lateral ball interception: hand movements during linear ball trajectories.
    Arzamarski R; Harrison SJ; Hajnal A; Michaels CF
    Exp Brain Res; 2007 Mar; 177(3):312-23. PubMed ID: 16957883
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Catching what we can't see: manual interception of occluded fly-ball trajectories.
    Bosco G; Delle Monache S; Lacquaniti F
    PLoS One; 2012; 7(11):e49381. PubMed ID: 23166653
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of roll visual motion on online control of arm movement: reaching within a dynamic virtual environment.
    Dvorkin AY; Kenyon RV; Keshner EA
    Exp Brain Res; 2009 Feb; 193(1):95-107. PubMed ID: 18936925
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Context effects on smooth pursuit and manual interception of a disappearing target.
    Kreyenmeier P; Fooken J; Spering M
    J Neurophysiol; 2017 Jul; 118(1):404-415. PubMed ID: 28515287
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Prospective control in catching: the persistent Angle-of-approach effect in lateral interception.
    Ledouit S; Casanova R; Zaal FT; Bootsma RJ
    PLoS One; 2013; 8(11):e80827. PubMed ID: 24278324
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Control strategies when intercepting slowly moving targets.
    Dubrowski A; Carnahan H
    J Mot Behav; 2001 Mar; 33(1):37-48. PubMed ID: 11265056
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fast random motion biases judgments of visible and occluded motion speed.
    Battaglini L; Maniglia M; Konishi M; Contemori G; Coccaro A; Casco C
    Vision Res; 2018 Sep; 150():38-43. PubMed ID: 30102923
    [TBL] [Abstract][Full Text] [Related]  

  • 19. (De)synchronization of advanced visual information and ball flight characteristics constrains emergent information-movement couplings during one-handed catching.
    Stone JA; Maynard IW; North JS; Panchuk D; Davids K
    Exp Brain Res; 2015 Feb; 233(2):449-58. PubMed ID: 25362517
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Neural prediction of complex accelerations for object interception.
    de Rugy A; Marinovic W; Wallis G
    J Neurophysiol; 2012 Feb; 107(3):766-71. PubMed ID: 22090456
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.