BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 24940918)

  • 21. Seasonal metabolic acclimatization in mountain chickadees and juniper titmice.
    Cooper SJ
    Physiol Biochem Zool; 2002; 75(4):386-95. PubMed ID: 12324895
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Obligatory homeothermy of mesic habitat-adapted African striped mice, Rhabdomys pumilio, is governed by seasonal basal metabolism and year-round 'thermogenic readiness' of brown adipose tissue.
    Welman S; Jastroch M; Mzilikazi N
    J Exp Biol; 2022 Jul; 225(13):. PubMed ID: 35694963
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Seasonal adjustments in body mass and basal thermogenesis in Chinese hwameis (Garrulax canorus): the roles of temperature and photoperiod.
    Li C; Liu C; Hu P; Zheng X; Li M; Liu J
    J Exp Biol; 2022 Sep; 225(17):. PubMed ID: 36004672
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Seasonal Metabolic Acclimatization Varies in Direction and Magnitude among Populations of an Afrotropical Passerine Bird.
    Noakes MJ; Wolf BO; McKechnie AE
    Physiol Biochem Zool; 2017; 90(2):178-189. PubMed ID: 28277960
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Seasonal acclimatization to extreme climatic conditions by black-capped chickadees (Poecile atricapilla) in interior Alaska (64 degrees N).
    Sharbaugh SM
    Physiol Biochem Zool; 2001; 74(4):568-75. PubMed ID: 11436141
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Phenotypic flexibility of thermogenesis in the hwamei (Garrulax canorus): responses to cold acclimation.
    Zhou LM; Xia SS; Chen Q; Wang RM; Zheng WH; Liu JS
    Am J Physiol Regul Integr Comp Physiol; 2016 Feb; 310(4):R330-6. PubMed ID: 26661097
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Seasonal variation in body mass, body temperature and thermogenesis in the Hwamei, Garrulax canorus.
    Wu MX; Zhou LM; Zhao LD; Zhao ZJ; Zheng WH; Liu JS
    Comp Biochem Physiol A Mol Integr Physiol; 2015 Jan; 179():113-9. PubMed ID: 25263127
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Great tits (Parus major) in a west European temperate forest show little seasonal variation in metabolic energy requirements.
    Pacioni C; Sentís M; Hambly C; Speakman JR; Kerimov A; Bushuev A; Lens L; Strubbe D
    J Therm Biol; 2023 Dec; 118():103748. PubMed ID: 37984051
    [TBL] [Abstract][Full Text] [Related]  

  • 29. How does mitochondrial function relate to thermogenic capacity and basal metabolic rate in small birds?
    Milbergue MS; Vézina F; Desrosiers V; Blier PU
    J Exp Biol; 2022 Jun; 225(12):. PubMed ID: 35762381
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Seasonal metabolic variation in two populations of an Afrotropical euplectid bird.
    van de Ven TM; Mzilikazi N; McKechnie AE
    Physiol Biochem Zool; 2013; 86(1):19-26. PubMed ID: 23303318
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Plasma thyroid hormone concentrations in a wintering passerine bird: their relationship to geographic variation, environmental factors, metabolic rate, and body fat.
    Burger MF; Denver RJ
    Physiol Biochem Zool; 2002; 75(2):187-99. PubMed ID: 12024294
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Shorebirds' seasonal adjustments in thermogenic capacity are reflected by changes in body mass: how preprogrammed and instantaneous acclimation work together.
    Vézina F; Dekinga A; Piersma T
    Integr Comp Biol; 2011 Sep; 51(3):394-408. PubMed ID: 21700573
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Seasonal variation in thermoregulatory capacity of three closely related Afrotropical Estrildid finches introduced to Europe.
    Pacioni C; Sentís M; Kerimov A; Bushuev A; Lens L; Strubbe D
    J Therm Biol; 2023 Apr; 113():103534. PubMed ID: 37055139
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Phenotypic flexibility of metabolic rate and evaporative water loss does not vary across a climatic gradient in an Afrotropical passerine bird.
    Noakes MJ; McKechnie AE
    J Exp Biol; 2020 Apr; 223(Pt 7):. PubMed ID: 32165435
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Anatomic and energetic correlates of divergent selection for basal metabolic rate in laboratory mice.
    Ksiazek A; Konarzewski M; Lapo IB
    Physiol Biochem Zool; 2004; 77(6):890-9. PubMed ID: 15674764
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Annual cycles of metabolic rate are genetically determined but can be shifted by phenotypic flexibility.
    Versteegh MA; Helm B; Gwinner E; Tieleman BI
    J Exp Biol; 2012 Oct; 215(Pt 19):3459-66. PubMed ID: 22771752
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Intraspecific correlations of basal and maximal metabolic rates in birds and the aerobic capacity model for the evolution of endothermy.
    Swanson DL; Thomas NE; Liknes ET; Cooper SJ
    PLoS One; 2012; 7(3):e34271. PubMed ID: 22479584
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Seasonal adjustments in body mass and thermogenesis in Mongolian gerbils (Meriones unguiculatus): the roles of short photoperiod and cold.
    Li XS; Wang DH
    J Comp Physiol B; 2005 Nov; 175(8):593-600. PubMed ID: 16151817
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Seasonal phenotypic flexibility of body mass, organ masses, and tissue oxidative capacity and their relationship to resting metabolic rate in Chinese bulbuls.
    Zheng WH; Liu JS; Swanson DL
    Physiol Biochem Zool; 2014; 87(3):432-44. PubMed ID: 24769707
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Short photoperiod increases energy intake, metabolic thermogenesis and organ mass in silky starlings Sturnus sericeus.
    Wang JQ; Wang JJ; Wu XJ; Zheng WH; Liu JS
    Dongwuxue Yanjiu; 2016 Mar; 37(2):75-83. PubMed ID: 27029864
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.