BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

220 related articles for article (PubMed ID: 24941335)

  • 1. The effect of micro-ECoG substrate footprint on the meningeal tissue response.
    Schendel AA; Nonte MW; Vokoun C; Richner TJ; Brodnick SK; Atry F; Frye S; Bostrom P; Pashaie R; Thongpang S; Eliceiri KW; Williams JC
    J Neural Eng; 2014 Aug; 11(4):046011. PubMed ID: 24941335
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A cranial window imaging method for monitoring vascular growth around chronically implanted micro-ECoG devices.
    Schendel AA; Thongpang S; Brodnick SK; Richner TJ; Lindevig BD; Krugner-Higby L; Williams JC
    J Neurosci Methods; 2013 Aug; 218(1):121-30. PubMed ID: 23769960
    [TBL] [Abstract][Full Text] [Related]  

  • 3. PEDOT-CNT-Coated Low-Impedance, Ultra-Flexible, and Brain-Conformable Micro-ECoG Arrays.
    Castagnola E; Maiolo L; Maggiolini E; Minotti A; Marrani M; Maita F; Pecora A; Angotzi GN; Ansaldo A; Boffini M; Fadiga L; Fortunato G; Ricci D
    IEEE Trans Neural Syst Rehabil Eng; 2015 May; 23(3):342-50. PubMed ID: 25073174
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of the effects of the human dura on macro- and micro-electrocorticographic recordings.
    Bundy DT; Zellmer E; Gaona CM; Sharma M; Szrama N; Hacker C; Freudenburg ZV; Daitch A; Moran DW; Leuthardt EC
    J Neural Eng; 2014 Feb; 11(1):016006. PubMed ID: 24654268
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A thin film polyimide mesh microelectrode for chronic epidural electrocorticography recording with enhanced contactability.
    Baek DH; Lee J; Byeon HJ; Choi H; Young Kim I; Lee KM; Jungho Pak J; Pyo Jang D; Lee SH
    J Neural Eng; 2014 Aug; 11(4):046023. PubMed ID: 25024292
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Meningeal Lymphangiogenesis and Enhanced Glymphatic Activity in Mice with Chronically Implanted EEG Electrodes.
    Hauglund NL; Kusk P; Kornum BR; Nedergaard M
    J Neurosci; 2020 Mar; 40(11):2371-2380. PubMed ID: 32047056
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A microfabricated, 3D-sharpened silicon shuttle for insertion of flexible electrode arrays through dura mater into brain.
    Joo HR; Fan JL; Chen S; Pebbles JA; Liang H; Chung JE; Yorita AM; Tooker AC; Tolosa VM; Geaghan-Breiner C; Roumis DK; Liu DF; Haque R; Frank LM
    J Neural Eng; 2019 Oct; 16(6):066021. PubMed ID: 31216526
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A MEMS-based flexible multichannel ECoG-electrode array.
    Rubehn B; Bosman C; Oostenveld R; Fries P; Stieglitz T
    J Neural Eng; 2009 Jun; 6(3):036003. PubMed ID: 19436080
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A minimally invasive flexible electrode array for simultaneous recording of ECoG signals from multiple brain regions.
    Jeong UJ; Lee J; Chou N; Kim K; Shin H; Chae U; Yu HY; Cho IJ
    Lab Chip; 2021 Jun; 21(12):2383-2397. PubMed ID: 33955442
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A cortical recording platform utilizing microECoG electrode arrays.
    Kim J; Wilson JA; Williams JC
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():5353-7. PubMed ID: 18003217
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Recording human electrocorticographic (ECoG) signals for neuroscientific research and real-time functional cortical mapping.
    Hill NJ; Gupta D; Brunner P; Gunduz A; Adamo MA; Ritaccio A; Schalk G
    J Vis Exp; 2012 Jun; (64):. PubMed ID: 22782131
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantifying long-term microelectrode array functionality using chronic in vivo impedance testing.
    Prasad A; Sanchez JC
    J Neural Eng; 2012 Apr; 9(2):026028. PubMed ID: 22442134
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of flexible ECoG electrode arrays for chronic recording in awake rats.
    Yeager JD; Phillips DJ; Rector DM; Bahr DF
    J Neurosci Methods; 2008 Aug; 173(2):279-85. PubMed ID: 18640155
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Versatile, modular 3D microelectrode arrays for neuronal ensemble recordings: from design to fabrication, assembly, and functional validation in non-human primates.
    Barz F; Livi A; Lanzilotto M; Maranesi M; Bonini L; Paul O; Ruther P
    J Neural Eng; 2017 Jun; 14(3):036010. PubMed ID: 28102825
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Insertion of linear 8.4 μm diameter 16 channel carbon fiber electrode arrays for single unit recordings.
    Patel PR; Na K; Zhang H; Kozai TD; Kotov NA; Yoon E; Chestek CA
    J Neural Eng; 2015 Aug; 12(4):046009. PubMed ID: 26035638
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comprehensive characterization and failure modes of tungsten microwire arrays in chronic neural implants.
    Prasad A; Xue QS; Sankar V; Nishida T; Shaw G; Streit WJ; Sanchez JC
    J Neural Eng; 2012 Oct; 9(5):056015. PubMed ID: 23010756
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Slippery Epidural ECoG Electrode for High-Performance Neural Recording and Interface.
    Alahi MEE; Liu Y; Khademi S; Nag A; Wang H; Wu T; Mukhopadhyay SC
    Biosensors (Basel); 2022 Nov; 12(11):. PubMed ID: 36421162
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrode modifications to lower electrode impedance and improve neural signal recording sensitivity.
    Chung T; Wang JQ; Wang J; Cao B; Li Y; Pang SW
    J Neural Eng; 2015 Oct; 12(5):056018. PubMed ID: 26394650
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Meningeal inflammatory response and fibrous tissue remodeling around intracortical implants: An in vivo two-photon imaging study.
    Eles JR; Vazquez AL; Kozai TDY; Cui XT
    Biomaterials; 2019 Mar; 195():111-123. PubMed ID: 30634095
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Clinical applications of penetrating neural interfaces and Utah Electrode Array technologies.
    Normann RA; Fernandez E
    J Neural Eng; 2016 Dec; 13(6):061003. PubMed ID: 27762237
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.