These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

318 related articles for article (PubMed ID: 24941410)

  • 1. Nanoscale imaging by superresolution fluorescence microscopy and its emerging applications in biomedical research.
    Bertocchi C; Goh WI; Zhang Z; Kanchanawong P
    Crit Rev Biomed Eng; 2013; 41(4-5):281-308. PubMed ID: 24941410
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Correlation analysis framework for localization-based superresolution microscopy.
    Schnitzbauer J; Wang Y; Zhao S; Bakalar M; Nuwal T; Chen B; Huang B
    Proc Natl Acad Sci U S A; 2018 Mar; 115(13):3219-3224. PubMed ID: 29531072
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stochastic approach to the molecular counting problem in superresolution microscopy.
    Rollins GC; Shin JY; Bustamante C; Pressé S
    Proc Natl Acad Sci U S A; 2015 Jan; 112(2):E110-8. PubMed ID: 25535361
    [TBL] [Abstract][Full Text] [Related]  

  • 4. From single molecules to life: microscopy at the nanoscale.
    Turkowyd B; Virant D; Endesfelder U
    Anal Bioanal Chem; 2016 Oct; 408(25):6885-911. PubMed ID: 27613013
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Technical review: types of imaging-direct STORM.
    Jensen E; Crossman DJ
    Anat Rec (Hoboken); 2014 Dec; 297(12):2227-31. PubMed ID: 24995970
    [TBL] [Abstract][Full Text] [Related]  

  • 6. STED and STORM Superresolution Imaging of Primary Cilia.
    Yang TT; Chong WM; Liao JC
    Methods Mol Biol; 2016; 1454():169-92. PubMed ID: 27514922
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Smart fluorescent proteins: innovation for barrier-free superresolution imaging in living cells.
    Tiwari DK; Nagai T
    Dev Growth Differ; 2013 May; 55(4):491-507. PubMed ID: 23635320
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Imaging cellular ultrastructure by PALM, iPALM, and correlative iPALM-EM.
    Shtengel G; Wang Y; Zhang Z; Goh WI; Hess HF; Kanchanawong P
    Methods Cell Biol; 2014; 123():273-94. PubMed ID: 24974033
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Answers to fundamental questions in superresolution microscopy.
    Heintzmann R
    Philos Trans A Math Phys Eng Sci; 2021 Jun; 379(2199):20210105. PubMed ID: 33896198
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Superresolution imaging using single-molecule localization.
    Patterson G; Davidson M; Manley S; Lippincott-Schwartz J
    Annu Rev Phys Chem; 2010; 61():345-67. PubMed ID: 20055680
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Whole-cell, multicolor superresolution imaging using volumetric multifocus microscopy.
    Hajj B; Wisniewski J; El Beheiry M; Chen J; Revyakin A; Wu C; Dahan M
    Proc Natl Acad Sci U S A; 2014 Dec; 111(49):17480-5. PubMed ID: 25422417
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Single-molecule microscopy of molecules tagged with GFP or RFP derivatives in mammalian cells using nanobody binders.
    Platonova E; Winterflood CM; Junemann A; Albrecht D; Faix J; Ewers H
    Methods; 2015 Oct; 88():89-97. PubMed ID: 26123185
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Widely accessible method for superresolution fluorescence imaging of living systems.
    Dedecker P; Mo GC; Dertinger T; Zhang J
    Proc Natl Acad Sci U S A; 2012 Jul; 109(27):10909-14. PubMed ID: 22711840
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Three-dimensional superresolution colocalization of intracellular protein superstructures and the cell surface in live Caulobacter crescentus.
    Lew MD; Lee SF; Ptacin JL; Lee MK; Twieg RJ; Shapiro L; Moerner WE
    Proc Natl Acad Sci U S A; 2011 Nov; 108(46):E1102-10. PubMed ID: 22031697
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Photoswitchable fluorescent proteins for superresolution fluorescence microscopy circumventing the diffraction limit of light.
    Rocha S; De Keersmaecker H; Uji-i H; Hofkens J; Mizuno H
    Methods Mol Biol; 2014; 1076():793-812. PubMed ID: 24108655
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Two-dimensional standing wave total internal reflection fluorescence microscopy: superresolution imaging of single molecular and biological specimens.
    Chung E; Kim D; Cui Y; Kim YH; So PT
    Biophys J; 2007 Sep; 93(5):1747-57. PubMed ID: 17483188
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sample preparation for single molecule localization microscopy.
    Allen JR; Ross ST; Davidson MW
    Phys Chem Chem Phys; 2013 Nov; 15(43):18771-83. PubMed ID: 24084850
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Correlative Single-Molecule Localization Microscopy and Confocal Microscopy.
    Soeller C; Hou Y; Jayasinghe ID; Baddeley D; Crossman D
    Methods Mol Biol; 2017; 1663():205-217. PubMed ID: 28924670
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Breaking the diffraction barrier in fluorescence microscopy by optical shelving.
    Bretschneider S; Eggeling C; Hell SW
    Phys Rev Lett; 2007 May; 98(21):218103. PubMed ID: 17677813
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Super-resolution microscopy by nanoscale localization of photo-switchable fluorescent probes.
    Bates M; Huang B; Zhuang X
    Curr Opin Chem Biol; 2008 Oct; 12(5):505-14. PubMed ID: 18809508
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.