BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

442 related articles for article (PubMed ID: 24941413)

  • 1. A review of lower extremity assistive robotic exoskeletons in rehabilitation therapy.
    Chen G; Chan CK; Guo Z; Yu H
    Crit Rev Biomed Eng; 2013; 41(4-5):343-63. PubMed ID: 24941413
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Robotic orthoses for gait rehabilitation: An overview of mechanical design and control strategies.
    Jamwal PK; Hussain S; Ghayesh MH
    Proc Inst Mech Eng H; 2020 May; 234(5):444-457. PubMed ID: 31916511
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Against the odds: what to expect in rehabilitation of chronic spinal cord injury with a neurologically controlled Hybrid Assistive Limb exoskeleton. A subgroup analysis of 55 patients according to age and lesion level.
    Grasmücke D; Zieriacks A; Jansen O; Fisahn C; Sczesny-Kaiser M; Wessling M; Meindl RC; Schildhauer TA; Aach M
    Neurosurg Focus; 2017 May; 42(5):E15. PubMed ID: 28463613
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hybrid FES-robot cooperative control of ambulatory gait rehabilitation exoskeleton.
    del-Ama AJ; Gil-Agudo A; Pons JL; Moreno JC
    J Neuroeng Rehabil; 2014 Mar; 11():27. PubMed ID: 24594302
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Exoskeletons for Personal Use After Spinal Cord Injury.
    Kandilakis C; Sasso-Lance E
    Arch Phys Med Rehabil; 2021 Feb; 102(2):331-337. PubMed ID: 31228407
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Review of hybrid exoskeletons to restore gait following spinal cord injury.
    del-Ama AJ; Koutsou AD; Moreno JC; de-los-Reyes A; Gil-Agudo A; Pons JL
    J Rehabil Res Dev; 2012; 49(4):497-514. PubMed ID: 22773254
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Wearable rehabilitation exoskeletons of the lower limb: analysis of versatility and adaptability.
    Plaza A; Hernandez M; Puyuelo G; Garces E; Garcia E
    Disabil Rehabil Assist Technol; 2023 May; 18(4):392-406. PubMed ID: 33332159
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Clinician Perceptions of Robotic Exoskeletons for Locomotor Training After Spinal Cord Injury: A Qualitative Approach.
    Ehrlich-Jones L; Crown DS; Kinnett-Hopkins D; Field-Fote E; Furbish C; Mummidisetty CK; Bond RA; Forrest G; Jayaraman A; Heinemann AW
    Arch Phys Med Rehabil; 2021 Feb; 102(2):203-215. PubMed ID: 33171130
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Exoskeletons for rehabilitation of patients with spinal cord injuries. Options and limitations].
    Aach M; Meindl RC; Geßmann J; Schildhauer TA; Citak M; Cruciger O
    Unfallchirurg; 2015 Feb; 118(2):130-7. PubMed ID: 25672637
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Locomotor training using an overground robotic exoskeleton in long-term manual wheelchair users with a chronic spinal cord injury living in the community: Lessons learned from a feasibility study in terms of recruitment, attendance, learnability, performance and safety.
    Gagnon DH; Escalona MJ; Vermette M; Carvalho LP; Karelis AD; Duclos C; Aubertin-Leheudre M
    J Neuroeng Rehabil; 2018 Mar; 15(1):12. PubMed ID: 29490678
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Exoskeletons' design and usefulness evidence according to a systematic review of lower limb exoskeletons used for functional mobility by people with spinal cord injury.
    Lajeunesse V; Vincent C; Routhier F; Careau E; Michaud F
    Disabil Rehabil Assist Technol; 2016 Oct; 11(7):535-47. PubMed ID: 26340538
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Effectiveness and Safety of Exoskeletons as Assistive and Rehabilitation Devices in the Treatment of Neurologic Gait Disorders in Patients with Spinal Cord Injury: A Systematic Review.
    Fisahn C; Aach M; Jansen O; Moisi M; Mayadev A; Pagarigan KT; Dettori JR; Schildhauer TA
    Global Spine J; 2016 Dec; 6(8):822-841. PubMed ID: 27853668
    [No Abstract]   [Full Text] [Related]  

  • 13. The immediate effects of robot-assistance on energy consumption and cardiorespiratory load during walking compared to walking without robot-assistance: a systematic review.
    Lefeber N; Swinnen E; Kerckhofs E
    Disabil Rehabil Assist Technol; 2017 Oct; 12(7):657-671. PubMed ID: 27762641
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Gait speed using powered robotic exoskeletons after spinal cord injury: a systematic review and correlational study.
    Louie DR; Eng JJ; Lam T;
    J Neuroeng Rehabil; 2015 Oct; 12():82. PubMed ID: 26463355
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Assistive powered exoskeleton for complete spinal cord injury: correlations between walking ability and exoskeleton control.
    Guanziroli E; Cazzaniga M; Colombo L; Basilico S; Legnani G; Molteni F
    Eur J Phys Rehabil Med; 2019 Apr; 55(2):209-216. PubMed ID: 30156088
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Budget impact analysis of robotic exoskeleton use for locomotor training following spinal cord injury in four SCI Model Systems.
    Pinto D; Garnier M; Barbas J; Chang SH; Charlifue S; Field-Fote E; Furbish C; Tefertiller C; Mummidisetty CK; Taylor H; Jayaraman A; Heinemann AW
    J Neuroeng Rehabil; 2020 Jan; 17(1):4. PubMed ID: 31924224
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Exoskeleton robots for lower limb assistance: A review of materials, actuation, and manufacturing methods.
    Hussain F; Goecke R; Mohammadian M
    Proc Inst Mech Eng H; 2021 Dec; 235(12):1375-1385. PubMed ID: 34254562
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Robotic exoskeletons for reengaging in everyday activities: promises, pitfalls, and opportunities.
    Fritz H; Patzer D; Galen SS
    Disabil Rehabil; 2019 Mar; 41(5):560-563. PubMed ID: 29110547
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improved Active Disturbance Rejection Control for Trajectory Tracking Control of Lower Limb Robotic Rehabilitation Exoskeleton.
    Aole S; Elamvazuthi I; Waghmare L; Patre B; Meriaudeau F
    Sensors (Basel); 2020 Jun; 20(13):. PubMed ID: 32630115
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Robot-assisted upper extremity rehabilitation for cervical spinal cord injuries: a systematic scoping review.
    Singh H; Unger J; Zariffa J; Pakosh M; Jaglal S; Craven BC; Musselman KE
    Disabil Rehabil Assist Technol; 2018 Oct; 13(7):704-715. PubMed ID: 29334467
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.