These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 2494166)

  • 1. Effect of guanine nucleotides on the conformation and stability of chloroplast elongation factor Tu.
    Lapadat MA; Spremulli LL
    J Biol Chem; 1989 Apr; 264(10):5510-4. PubMed ID: 2494166
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Euglena gracilis chloroplast elongation factor Tu. Interaction with guanine nucleotides and aminoacyl-tRNA.
    Sreedharan SP; Spremulli LL
    J Biol Chem; 1985 Jul; 260(15):8771-6. PubMed ID: 3926760
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Euglena gracilis chloroplast elongation factor Tu. Purification and initial characterization.
    Sreedharan SP; Beck CM; Spremulli LL
    J Biol Chem; 1985 Mar; 260(5):3126-31. PubMed ID: 3919016
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of nucleotide- and aurodox-induced changes in elongation factor Tu conformation upon its interactions with aminoacyl transfer RNA. A fluorescence study.
    Dell VA; Miller DL; Johnson AE
    Biochemistry; 1990 Feb; 29(7):1757-63. PubMed ID: 2110000
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of GDP on the interactions between chloroplast EF-Ts and chloroplast and E. coli EF-Tu.
    Spremulli GH; Spremulli LL
    Biochem Biophys Res Commun; 1987 Nov; 148(3):1490-5. PubMed ID: 3318834
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mg2+ is not catalytically required in the intrinsic and kirromycin-stimulated GTPase action of Thermus thermophilus EF-Tu.
    Rutthard H; Banerjee A; Makinen MW
    J Biol Chem; 2001 Jun; 276(22):18728-33. PubMed ID: 11274193
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Probing the reactivity of the GTP- and GDP-bound conformations of elongation factor Tu in complex with the antibiotic GE2270 A.
    Anborgh PH; Parmeggiani A
    J Biol Chem; 1993 Nov; 268(33):24622-8. PubMed ID: 8227020
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of the antibiotic pulvomycin on the elongation factor Tu-dependent reactions. Comparison with other antibiotics.
    Anborgh PH; Okamura S; Parmeggiani A
    Biochemistry; 2004 Dec; 43(49):15550-6. PubMed ID: 15581367
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structure-function relationships of elongation factor Tu. Isolation and activity of the guanine-nucleotide-binding domain.
    Jensen M; Cool RH; Mortensen KK; Clark BF; Parmeggiani A
    Eur J Biochem; 1989 Jun; 182(2):247-55. PubMed ID: 2661226
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Kirromycin drastically reduces the affinity of Escherichia coli elongation factor Tu for aminoacyl-tRNA.
    Abrahams JP; van Raaij MJ; Ott G; Kraal B; Bosch L
    Biochemistry; 1991 Jul; 30(27):6705-10. PubMed ID: 2065055
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mutations to kirromycin resistance occur in the interface of domains I and III of EF-Tu.GTP.
    Abdulkarim F; Liljas L; Hughes D
    FEBS Lett; 1994 Sep; 352(2):118-22. PubMed ID: 7925958
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Altered regulation of the guanosine 5'-triphosphate activity in a kirromycin-resistant elongation factor Tu.
    Fasano O; Parmeggiani A
    Biochemistry; 1981 Mar; 20(5):1361-6. PubMed ID: 6112013
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interaction of EF-Tu with EF-Ts: substitution of His-118 in EF-Tu destabilizes the EF-Tu x EF-Ts complex but does not prevent EF-Ts from stimulating the release of EF-Tu-bound GDP.
    Jonák J; Anborgh PH; Parmeggiani A
    FEBS Lett; 1998 Jan; 422(2):189-92. PubMed ID: 9490003
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reactivity of essential histidine residues in EF-Tu.GDP and EF-Tu.GTP from Escherichia coli.
    Jonák J; Rychlík I
    Biochim Biophys Acta; 1987 Jan; 908(1):97-102. PubMed ID: 3542047
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Expression of bovine mitochondrial elongation factor Ts in Escherichia coli and characterization of the heterologous complex formed with prokaryotic elongation factor Tu.
    Xin H; Leanza K; Spremulli LL
    Biochim Biophys Acta; 1997 May; 1352(1):102-12. PubMed ID: 9177488
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bovine mitochondrial protein synthesis elongation factors. Identification and initial characterization of an elongation factor Tu-elongation factor Ts complex.
    Schwartzbach CJ; Spremulli LL
    J Biol Chem; 1989 Nov; 264(32):19125-31. PubMed ID: 2808417
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of the elongation factors from calf brain. 2. Functional properties of EF-1 alpha, the action of physiological ligands and kirromycin.
    Crechet JB; Parmeggiani A
    Eur J Biochem; 1986 Dec; 161(3):647-53. PubMed ID: 3641717
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fluoroaluminates do not affect the guanine-nucleotide binding centre of the peptide chain elongation factor EF-Tu.
    Kraal B; de Graaf JM; Mesters JR; van Hoof PJ; Jacquet E; Parmeggiani A
    Eur J Biochem; 1990 Sep; 192(2):305-9. PubMed ID: 2209587
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Functional role of the noncatalytic domains of elongation factor Tu in the interactions with ligands.
    Cetin R; Anborgh PH; Cool RH; Parmeggiani A
    Biochemistry; 1998 Jan; 37(2):486-95. PubMed ID: 9425069
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Conformational alteration of protein synthesis elongation factor EF-Tu by EF-Ts and by kirromycin.
    Blumenthal T; Douglass J; Smith D
    Proc Natl Acad Sci U S A; 1977 Aug; 74(8):3264-7. PubMed ID: 269389
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.