These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
43. Accuracy and reproducibility of automated drusen segmentation in eyes with non-neovascular age-related macular degeneration. Nittala MG; Ruiz-Garcia H; Sadda SR Invest Ophthalmol Vis Sci; 2012 Dec; 53(13):8319-24. PubMed ID: 23150629 [TBL] [Abstract][Full Text] [Related]
44. Clinical validation of an algorithm for rapid and accurate automated segmentation of intracoronary optical coherence tomography images. Chatzizisis YS; Koutkias VG; Toutouzas K; Giannopoulos A; Chouvarda I; Riga M; Antoniadis AP; Cheimariotis G; Doulaverakis C; Tsampoulatidis I; Bouki K; Kompatsiaris I; Stefanadis C; Maglaveras N; Giannoglou GD Int J Cardiol; 2014 Apr; 172(3):568-80. PubMed ID: 24529948 [TBL] [Abstract][Full Text] [Related]
45. Repeatability of peripapillary retinal nerve fiber layer and inner retinal thickness among two spectral domain optical coherence tomography devices. Matlach J; Wagner M; Malzahn U; Göbel W Invest Ophthalmol Vis Sci; 2014 Sep; 55(10):6536-46. PubMed ID: 25228545 [TBL] [Abstract][Full Text] [Related]
46. Towards quantitative analysis of retinal features in optical coherence tomography. Baroni M; Fortunato P; La Torre A Med Eng Phys; 2007 May; 29(4):432-41. PubMed ID: 16860587 [TBL] [Abstract][Full Text] [Related]
47. An automated method for choroidal thickness measurement from Enhanced Depth Imaging Optical Coherence Tomography images. Hussain MA; Bhuiyan A; Ishikawa H; Theodore Smith R; Schuman JS; Kotagiri R Comput Med Imaging Graph; 2018 Jan; 63():41-51. PubMed ID: 29366655 [TBL] [Abstract][Full Text] [Related]
48. Automatic segmentation of the central epithelium imaged with three optical coherence tomography devices. Ge L; Shen M; Tao A; Wang J; Dou G; Lu F Eye Contact Lens; 2012 May; 38(3):150-7. PubMed ID: 22415151 [TBL] [Abstract][Full Text] [Related]
49. In vivo assessment of thickness and reflectivity in a rat outer retinal degeneration model with ultrahigh resolution optical coherence tomography. Hariri S; Moayed AA; Choh V; Bizheva K Invest Ophthalmol Vis Sci; 2012 Apr; 53(4):1982-9. PubMed ID: 22395894 [TBL] [Abstract][Full Text] [Related]
50. Comparison of retinal thickness measurements and segmentation performance of four different spectral and time domain OCT devices in neovascular age-related macular degeneration. Mylonas G; Ahlers C; Malamos P; Golbaz I; Deak G; Schuetze C; Sacu S; Schmidt-Erfurth U Br J Ophthalmol; 2009 Nov; 93(11):1453-60. PubMed ID: 19520692 [TBL] [Abstract][Full Text] [Related]
51. Automatic Retinal Layer Segmentation of OCT Images With Central Serous Retinopathy. Xiang D; Chen G; Shi F; Zhu W; Liu Q; Yuan S; Chen X IEEE J Biomed Health Inform; 2019 Jan; 23(1):283-295. PubMed ID: 29994379 [TBL] [Abstract][Full Text] [Related]
52. Primary retinal pathology in multiple sclerosis as detected by optical coherence tomography. Saidha S; Syc SB; Ibrahim MA; Eckstein C; Warner CV; Farrell SK; Oakley JD; Durbin MK; Meyer SA; Balcer LJ; Frohman EM; Rosenzweig JM; Newsome SD; Ratchford JN; Nguyen QD; Calabresi PA Brain; 2011 Feb; 134(Pt 2):518-33. PubMed ID: 21252110 [TBL] [Abstract][Full Text] [Related]
53. Automatic Anisotropic Diffusion Filtering and Graph-search Segmentation of Macular Spectral-domain Optical Coherence Tomographic (SD-OCT) Images. Usha A; Shajil N; Sasikala M Curr Med Imaging Rev; 2019; 15(3):308-318. PubMed ID: 31989882 [TBL] [Abstract][Full Text] [Related]
54. Three-dimensional imaging of the foveal photoreceptor layer in central serous chorioretinopathy using high-speed optical coherence tomography. Ojima Y; Hangai M; Sasahara M; Gotoh N; Inoue R; Yasuno Y; Makita S; Yatagai T; Tsujikawa A; Yoshimura N Ophthalmology; 2007 Dec; 114(12):2197-207. PubMed ID: 17507096 [TBL] [Abstract][Full Text] [Related]
55. Relationship of the optical coherence tomography signal to underlying retinal histology in the tree shrew (Tupaia belangeri). Abbott CJ; McBrien NA; Grünert U; Pianta MJ Invest Ophthalmol Vis Sci; 2009 Jan; 50(1):414-23. PubMed ID: 18708623 [TBL] [Abstract][Full Text] [Related]
57. Reliability and reproducibility of macular segmentation using a custom-built optical coherence tomography retinal image analysis software. DeBuc DC; Somfai GM; Ranganathan S; Tátrai E; Ferencz M; Puliafito CA J Biomed Opt; 2009; 14(6):064023. PubMed ID: 20059261 [TBL] [Abstract][Full Text] [Related]
58. High-resolution imaging of the human retina in vivo after scatter photocoagulation treatment using a semiautomated laser system. Kriechbaum K; Bolz M; Deak GG; Prager S; Scholda C; Schmidt-Erfurth U Ophthalmology; 2010 Mar; 117(3):545-51. PubMed ID: 20031226 [TBL] [Abstract][Full Text] [Related]
59. Retinal layer segmentation in patients with multiple sclerosis using spectral domain optical coherence tomography. Garcia-Martin E; Polo V; Larrosa JM; Marques ML; Herrero R; Martin J; Ara JR; Fernandez J; Pablo LE Ophthalmology; 2014 Feb; 121(2):573-9. PubMed ID: 24268855 [TBL] [Abstract][Full Text] [Related]
60. Photoreceptor layer features in eyes with closed macular holes: optical coherence tomography findings and correlation with visual outcomes. Villate N; Lee JE; Venkatraman A; Smiddy WE Am J Ophthalmol; 2005 Feb; 139(2):280-9. PubMed ID: 15733989 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]