BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 24942001)

  • 1. Holoparasitic Rafflesiaceae possess the most reduced endophytes and yet give rise to the world's largest flowers.
    Nikolov LA; Tomlinson PB; Manickam S; Endress PK; Kramer EM; Davis CC
    Ann Bot; 2014 Aug; 114(2):233-42. PubMed ID: 24942001
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Floral structure and development in Rafflesiaceae with emphasis on their exceptional gynoecia.
    Nikolov LA; Staedler YM; Manickam S; Schönenberger J; Endress PK; Kramer EM; Davis CC
    Am J Bot; 2014 Feb; 101(2):225-43. PubMed ID: 24509798
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Developmental origins of the world's largest flowers, Rafflesiaceae.
    Nikolov LA; Endress PK; Sugumaran M; Sasirat S; Vessabutr S; Kramer EM; Davis CC
    Proc Natl Acad Sci U S A; 2013 Nov; 110(46):18578-83. PubMed ID: 24167265
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Living with a giant, flowering parasite: metabolic differences between Tetrastigma loheri Gagnep. (Vitaceae) shoots uninfected and infected with Rafflesia (Rafflesiaceae) and potential applications for propagation.
    Molina J; Nikolic D; Jeevarathanam JR; Abzalimov R; Park EJ; Pedales R; Mojica EE; Tandang D; McLaughlin W; Wallick K; Adams J; Novy A; Pell SK; van Breemen RB; Pezzuto JM
    Planta; 2021 Nov; 255(1):4. PubMed ID: 34841446
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Beginnings of a plant parasite: early development of Rafflesia consueloae inside its Tetrastigma host.
    Bascos EMA; Fernando ES; Duya MV; Rodriguez LJV
    Planta; 2021 Aug; 254(3):61. PubMed ID: 34455499
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rafflesia patma Blume flower organs: histology of the epidermis and vascular structures, and a search for stomata.
    Mursidawati S; Wicaksono A; Teixeira da Silva JA
    Planta; 2020 Jun; 251(6):112. PubMed ID: 32494866
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Floral gigantism in Rafflesiaceae.
    Davis CC; Latvis M; Nickrent DL; Wurdack KJ; Baum DA
    Science; 2007 Mar; 315(5820):1812. PubMed ID: 17218493
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reading between the vines: Hosts as islands for extreme holoparasitic plants.
    Barkman TJ; Klooster MR; Gaddis KD; Franzone B; Calhoun S; Manickam S; Vessabutr S; Sasirat S; Davis CC
    Am J Bot; 2017 Sep; 104(9):1382-1389. PubMed ID: 29885244
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effects of fungal root endophytes on plant growth: a meta-analysis.
    Mayerhofer MS; Kernaghan G; Harper KA
    Mycorrhiza; 2013 Feb; 23(2):119-28. PubMed ID: 22983627
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Detection of Burkholderia in the seeds of Psychotria punctata (Rubiaceae) - Microscopic evidence for vertical transmission in the leaf nodule symbiosis.
    Sinnesael A; Eeckhout S; Janssens SB; Smets E; Panis B; Leroux O; Verstraete B
    PLoS One; 2018; 13(12):e0209091. PubMed ID: 30550604
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Sapria himalayana genome provides new insights into the lifestyle of endoparasitic plants.
    Guo X; Hu X; Li J; Shao B; Wang Y; Wang L; Li K; Lin D; Wang H; Gao Z; Jiao Y; Wen Y; Ji H; Ma C; Ge S; Jiang W; Jin X
    BMC Biol; 2023 Jun; 21(1):134. PubMed ID: 37280593
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Deeply Altered Genome Architecture in the Endoparasitic Flowering Plant Sapria himalayana Griff. (Rafflesiaceae).
    Cai L; Arnold BJ; Xi Z; Khost DE; Patel N; Hartmann CB; Manickam S; Sasirat S; Nikolov LA; Mathews S; Sackton TB; Davis CC
    Curr Biol; 2021 Mar; 31(5):1002-1011.e9. PubMed ID: 33485466
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification and characterization of RcMADS1, an AGL24 ortholog from the holoparasitic plant Rafflesia cantleyi Solms-Laubach (Rafflesiaceae).
    Ramamoorthy R; Phua EE; Lim SH; Tan HT; Kumar PP
    PLoS One; 2013; 8(6):e67243. PubMed ID: 23840638
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rafflesia spp.: propagation and conservation.
    Wicaksono A; Mursidawati S; Sukamto LA; Teixeira da Silva JA
    Planta; 2016 Aug; 244(2):289-96. PubMed ID: 27059028
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Embryology of Pera (Peraceae, Malpighiales): systematics and evolutionary implications.
    de Olivera Franca R; De-Paula OC
    J Plant Res; 2017 Jul; 130(4):709-721. PubMed ID: 28247061
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification, sexual dimorphism and aspects of the natural history of Sapria himalayana (Rafflesiaceae) on Vietnam's Lang Biang Plateau.
    Trần HĐ; Lưu HT; Nguyễn QĐ; Nguyễn HC; Athen P; Wong KM
    Bot Stud; 2018 Dec; 59(1):29. PubMed ID: 30535726
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Impact of endophytic colonization patterns on Zamioculcas zamiifolia stress response and in regulating ROS, tryptophan and IAA levels under airborne formaldehyde and formaldehyde-contaminated soil conditions.
    Khaksar G; Treesubsuntorn C; Thiravetyan P
    Plant Physiol Biochem; 2017 May; 114():1-9. PubMed ID: 28246037
    [TBL] [Abstract][Full Text] [Related]  

  • 18. New insights into the population biology of endoparasitic Rafflesiaceae.
    Twyford AD
    Am J Bot; 2017 Oct; 104(10):1433-1436. PubMed ID: 29885227
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tripartite Interactions Between Endophytic Fungi, Arbuscular Mycorrhizal Fungi, and Leymus chinensis.
    Liu H; Wu M; Liu J; Qu Y; Gao Y; Ren A
    Microb Ecol; 2020 Jan; 79(1):98-109. PubMed ID: 31177395
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nitrogen-fixing bacteria and Oxalis - evidence for a vertically inherited bacterial symbiosis.
    Jooste M; Roets F; Midgley GF; Oberlander KC; Dreyer LL
    BMC Plant Biol; 2019 Oct; 19(1):441. PubMed ID: 31646970
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.