These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
157 related articles for article (PubMed ID: 24942113)
1. Vasomotor effects of acetylcholine, bradykinin, noradrenaline, 5-hydroxytryptamine, histamine and angiotensin II on the mouse basilar artery. Islam MZ; Watanabe Y; Nguyen HT; Yamazaki-Himeno E; Obi T; Shiraishi M; Miyamoto A J Vet Med Sci; 2014 Oct; 76(10):1339-45. PubMed ID: 24942113 [TBL] [Abstract][Full Text] [Related]
2. Vasomotor effects of noradrenaline, 5-hydroxytryptamine, angiotensin II, bradykinin, histamine, and acetylcholine on the bat (Rhinolophus ferrumequinum) basilar artery. Islam MZ; Kojima S; Sameshima M; Obi T; Yamazaki-Himeno E; Shiraishi M; Miyamoto A Comp Biochem Physiol C Toxicol Pharmacol; 2021 Dec; 250():109190. PubMed ID: 34536573 [TBL] [Abstract][Full Text] [Related]
3. Vasomotor effects of 5-hydroxytryptamine, histamine, angiotensin II, acetylcholine, noradrenaline, and bradykinin on the cerebral artery of bottlenose dolphin (Tursiops truncatus). Islam MZ; Sawatari Y; Kojima S; Kiyama Y; Nakamura M; Sasaki K; Otsuka M; Obi T; Shiraishi M; Miyamoto A J Vet Med Sci; 2020 Oct; 82(10):1456-1463. PubMed ID: 32814751 [TBL] [Abstract][Full Text] [Related]
4. Vasomotor effects of noradrenaline, acetylcholine, histamine, 5-hydroxytryptamine and bradykinin on snake (Trimeresurus flavoviridis) basilar arteries. Yoshinaga N; Okuno T; Watanabe Y; Matsumoto T; Shiraishi M; Obi T; Yabuki A; Miyamoto A Comp Biochem Physiol C Toxicol Pharmacol; 2007 Nov; 146(4):478-83. PubMed ID: 17604230 [TBL] [Abstract][Full Text] [Related]
5. Characterization of 5-hydroxytryptamine-induced contraction and acetylcholine-induced relaxation in isolated chicken basilar artery. Matsumoto F; Watanabe Y; Obi T; Islam MZ; Yamazaki-Himeno E; Shiraishi M; Miyamoto A Poult Sci; 2012 May; 91(5):1158-64. PubMed ID: 22499874 [TBL] [Abstract][Full Text] [Related]
6. Histamine-induced modulation of vascular tone in the isolated chicken basilar artery: a possible involvement of endothelium. Okuno T; Yabuki A; Shiraishi M; Obi T; Miyamoto A Comp Biochem Physiol C Toxicol Pharmacol; 2008 Apr; 147(3):339-44. PubMed ID: 18280220 [TBL] [Abstract][Full Text] [Related]
7. Characterization of bradykinin-induced endothelium-independent contraction in equine basilar artery. Ueno D; Yabuki A; Obi T; Shiraishi M; Nishio A; Miyamoto A J Vet Pharmacol Ther; 2009 Jun; 32(3):264-70. PubMed ID: 19646091 [TBL] [Abstract][Full Text] [Related]
8. Stimulation of bradykinin B2-receptors on endothelial cells induces relaxation and contraction in porcine basilar artery in vitro. Miyamoto A; Ishiguro S; Nishio A Br J Pharmacol; 1999 Sep; 128(1):241-7. PubMed ID: 10498858 [TBL] [Abstract][Full Text] [Related]
9. Angiotensin-(1-7) augments bradykinin-induced vasodilation by competing with ACE and releasing nitric oxide. Li P; Chappell MC; Ferrario CM; Brosnihan KB Hypertension; 1997 Jan; 29(1 Pt 2):394-400. PubMed ID: 9039133 [TBL] [Abstract][Full Text] [Related]
10. Hypertension alters the endothelial-dependent biphasic response of bradykinin in isolated Microminipig basilar artery. Zahorul Islam M; Kawaguchi H; Miura N; Miyoshi N; Yamazaki-Himeno E; Shiraishi M; Miyamoto A; Tanimoto A Microvasc Res; 2017 Nov; 114():52-57. PubMed ID: 28587989 [TBL] [Abstract][Full Text] [Related]
11. Differential vasomotor action of noradrenaline, serotonin, and histamine in isolated basilar artery from rat and guinea-pig. Chang JY; Hardebo JE; Owman C Acta Physiol Scand; 1988 Jan; 132(1):91-102. PubMed ID: 2906211 [TBL] [Abstract][Full Text] [Related]
13. Impaired endothelium-dependent relaxation in isolated resistance arteries of spontaneously diabetic rats. Heygate KM; Lawrence IG; Bennett MA; Thurston H Br J Pharmacol; 1995 Dec; 116(8):3251-9. PubMed ID: 8719804 [TBL] [Abstract][Full Text] [Related]
14. Divergent roles of angiotensin II AT1 and AT2 receptors in modulating coronary microvascular function. Zhang C; Hein TW; Wang W; Kuo L Circ Res; 2003 Feb; 92(3):322-9. PubMed ID: 12595345 [TBL] [Abstract][Full Text] [Related]
15. Angiotensin-(1-7): a novel vasodilator of the coronary circulation. Brosnihan KB; Li P; Tallant EA; Ferrario CM Biol Res; 1998; 31(3):227-34. PubMed ID: 9830510 [TBL] [Abstract][Full Text] [Related]
17. Blockade of AT1 receptor partially restores vasoreactivity, NOS expression, and superoxide levels in cerebral and carotid arteries of hindlimb unweighting rats. Zhang R; Bai YG; Lin LJ; Bao JX; Zhang YY; Tang H; Cheng JH; Jia GL; Ren XL; Ma J J Appl Physiol (1985); 2009 Jan; 106(1):251-8. PubMed ID: 18988766 [TBL] [Abstract][Full Text] [Related]
18. Kinin receptors and angiotensin converting enzyme in rabbits basilar arteries. Whalley ET; Fritz H; Geiger R Naunyn Schmiedebergs Arch Pharmacol; 1983 Dec; 324(4):296-301. PubMed ID: 6141533 [TBL] [Abstract][Full Text] [Related]
19. The role of bradykinin, AT2 and angiotensin 1-7 receptors in the EDRF-dependent vasodilator effect of angiotensin II on the isolated mesenteric vascular bed of the rat. Soares de Moura R; Resende AC; Emiliano AF; Tano T; Mendes-Ribeiro AC; Correia ML; de Carvalho LC Br J Pharmacol; 2004 Mar; 141(5):860-6. PubMed ID: 14757704 [TBL] [Abstract][Full Text] [Related]
20. Endothelium-dependent relaxations mediated by inducible B1 and constitutive B2 kinin receptors in the bovine isolated coronary artery. Drummond GR; Cocks TM Br J Pharmacol; 1995 Nov; 116(5):2473-81. PubMed ID: 8581287 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]