These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 24942288)

  • 1. Tuning the growth mode of nanowires via the interaction among seeds, substrates and beam fluxes.
    Zannier V; Grillo V; Martelli F; Plaisier JR; Lausi A; Rubini S
    Nanoscale; 2014 Jul; 6(14):8392-9. PubMed ID: 24942288
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Controlling crystal phases in GaAs nanowires grown by Au-assisted molecular beam epitaxy.
    Dheeraj DL; Munshi AM; Scheffler M; van Helvoort AT; Weman H; Fimland BO
    Nanotechnology; 2013 Jan; 24(1):015601. PubMed ID: 23220972
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrical and Optical Properties of Au-Catalyzed GaAs Nanowires Grown on Si (111) Substrate by Molecular Beam Epitaxy.
    Wang CY; Hong YC; Ko ZJ; Su YW; Huang JH
    Nanoscale Res Lett; 2017 Dec; 12(1):290. PubMed ID: 28438011
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of substrate orientation on the structural quality of GaAs nanowires in molecular beam epitaxy.
    Zhang Z; Shi SX; Chen PP; Lu W; Zou J
    Nanotechnology; 2015 Jan; 26(25):255601. PubMed ID: 26024290
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Demonstration of Sn-seeded GaSb homo- and GaAs-GaSb heterostructural nanowires.
    Tornberg M; Mårtensson EK; Zamani RR; Lehmann S; Dick KA; Ghalamestani SG
    Nanotechnology; 2016 Apr; 27(17):175602. PubMed ID: 26984940
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanism of self-assembled growth of ordered GaAs nanowire arrays by metalorganic vapor phase epitaxy on GaAs vicinal substrates.
    Mohan P; Bag R; Singh S; Kumar A; Tyagi R
    Nanotechnology; 2012 Jan; 23(2):025601. PubMed ID: 22166369
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Controlling the morphology, composition and crystal structure in gold-seeded GaAs(1-x)Sb(x) nanowires.
    Yuan X; Caroff P; Wong-Leung J; Tan HH; Jagadish C
    Nanoscale; 2015 Mar; 7(11):4995-5003. PubMed ID: 25692266
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Temperature conditions for GaAs nanowire formation by Au-assisted molecular beam epitaxy.
    Tchernycheva M; Harmand JC; Patriarche G; Travers L; Cirlin GE
    Nanotechnology; 2006 Aug; 17(16):4025-30. PubMed ID: 21727532
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Zn(1-x)Mg(x)Te nanowires grown by solid source molecular beam epitaxy.
    Janik E; Dynowska E; Dłużewski P; Kret S; Presz A; Zaleszczyk W; Szuszkiewicz W; Morhange JF; Petroutchik A; Maćkowski S; Wojtowicz T
    Nanotechnology; 2008 Sep; 19(36):365606. PubMed ID: 21828877
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Control of GaAs nanowire morphology and crystal structure.
    Plante MC; Lapierre RR
    Nanotechnology; 2008 Dec; 19(49):495603. PubMed ID: 21730678
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Control and understanding of kink formation in InAs-InP heterostructure nanowires.
    Fahlvik Svensson S; Jeppesen S; Thelander C; Samuelson L; Linke H; Dick KA
    Nanotechnology; 2013 Aug; 24(34):345601. PubMed ID: 23900037
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Defect-free zinc-blende structured InAs nanowires realized by in situ two V/III ratio growth in molecular beam epitaxy.
    Zhang Z; Lu ZY; Chen PP; Lu W; Zou J
    Nanoscale; 2015 Aug; 7(29):12592-7. PubMed ID: 26145435
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nondestructive Characterizations of Au-Catalyzed GaAs Nanowires on GaAs(111)B Substrates via Identifications of 1st Order Optical Phonon Modes Using
    Park JH; Kim RS; Park SJ; Park GC; Chung CH
    J Nanosci Nanotechnol; 2020 Jul; 20(7):4358-4363. PubMed ID: 31968474
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Parallel-aligned GaAs nanowires with 110 orientation laterally grown on [311]B substrates via the gold-catalyzed vapor-liquid-solid mode.
    Zhang G; Tateno K; Gotoh H; Nakano H
    Nanotechnology; 2010 Mar; 21(9):095607. PubMed ID: 20139489
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Direct nucleation, morphology and compositional tuning of InAs
    Namazi L; Ghalamestani SG; Lehmann S; Zamani RR; Dick KA
    Nanotechnology; 2017 Apr; 28(16):165601. PubMed ID: 28346221
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nanowire morphology and particle phase control by tuning the In concentration of the foreign metal nanoparticle.
    Hallberg RT; Messing ME; Dick KA
    Nanotechnology; 2019 Feb; 30(5):054005. PubMed ID: 30511656
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Silver-assisted growth of high-quality InAs
    Wen L; Liu L; Liao D; Zhuo R; Pan D; Zhao J
    Nanotechnology; 2020 Nov; 31(46):465602. PubMed ID: 32750681
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A cathodoluminescence study of the influence of the seed particle preparation method on the optical properties of GaAs nanowires.
    Gustafsson A; Hillerich K; Messing ME; Storm K; Dick KA; Deppert K; Bolinsson J
    Nanotechnology; 2012 Jul; 23(26):265704. PubMed ID: 22699683
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Catalyst Composition Tuning: The Key for the Growth of Straight Axial Nanowire Heterostructures with Group III Interchange.
    Zannier V; Ercolani D; Gomes UP; David J; Gemmi M; Dubrovskii VG; Sorba L
    Nano Lett; 2016 Nov; 16(11):7183-7190. PubMed ID: 27760298
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Site-controlled VLS growth of planar nanowires: yield and mechanism.
    Zhang C; Miao X; Mohseni PK; Choi W; Li X
    Nano Lett; 2014 Dec; 14(12):6836-41. PubMed ID: 25343224
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.