These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 24942462)

  • 21. A small-scale air-cathode microbial fuel cell for on-line monitoring of water quality.
    Di Lorenzo M; Thomson AR; Schneider K; Cameron PJ; Ieropoulos I
    Biosens Bioelectron; 2014 Dec; 62():182-8. PubMed ID: 25005554
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Microbial fuel cell-based biosensor for toxic carbon monoxide monitoring.
    Zhou S; Huang S; Li Y; Zhao N; Li H; Angelidaki I; Zhang Y
    Talanta; 2018 Aug; 186():368-371. PubMed ID: 29784375
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Quantification of electron transfer rates to a solid phase electron acceptor through the stages of biofilm formation from single cells to multicellular communities.
    McLean JS; Wanger G; Gorby YA; Wainstein M; McQuaid J; Ishii SI; Bretschger O; Beyenal H; Nealson KH
    Environ Sci Technol; 2010 Apr; 44(7):2721-7. PubMed ID: 20199066
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Comparative analysis of microbial fuel cell based biosensors developed with a mixed culture and Shewanella loihica PV-4 and underlying biological mechanism.
    Yi Y; Xie B; Zhao T; Liu H
    Bioresour Technol; 2018 Oct; 265():415-421. PubMed ID: 29933189
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Microbial fuel cell based biosensor for in situ monitoring of anaerobic digestion process.
    Liu Z; Liu J; Zhang S; Xing XH; Su Z
    Bioresour Technol; 2011 Nov; 102(22):10221-9. PubMed ID: 21945210
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Graphite anode surface modification with controlled reduction of specific aryl diazonium salts for improved microbial fuel cells power output.
    Picot M; Lapinsonnière L; Rothballer M; Barrière F
    Biosens Bioelectron; 2011 Oct; 28(1):181-8. PubMed ID: 21803564
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The influence of antiscalants on biofouling of RO membranes in seawater desalination.
    Sweity A; Oren Y; Ronen Z; Herzberg M
    Water Res; 2013 Jun; 47(10):3389-98. PubMed ID: 23615335
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effects of inoculation strategy and cultivation approach on the performance of microbial fuel cell using marine sediment as bio-matrix.
    Liu Z; Li H; Liu J; Su Z
    J Appl Microbiol; 2008 Apr; 104(4):1163-70. PubMed ID: 18005344
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Metabolic modeling of spatial heterogeneity of biofilms in microbial fuel cells reveals substrate limitations in electrical current generation.
    Jayasinghe N; Franks A; Nevin KP; Mahadevan R
    Biotechnol J; 2014 Oct; 9(10):1350-61. PubMed ID: 25113946
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effect of control mode on the sensitivity of a microbial fuel cell biosensor with Shewanella loihica PV-4 and the underlying bioelectrochemical mechanism.
    Yi Y; Xie B; Zhao T; Qian Z; Liu H
    Bioelectrochemistry; 2019 Aug; 128():109-117. PubMed ID: 30978517
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Enhancement of biological oxygen demand detection with a microbial fuel cell using potassium permanganate as cathodic electron acceptor.
    Wang S; Tian S; Zhang P; Ye J; Tao X; Li F; Zhou Z; Nabi M
    J Environ Manage; 2019 Dec; 252():109682. PubMed ID: 31610444
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Evaluation of procedures to acclimate a microbial fuel cell for electricity production.
    Kim JR; Min B; Logan BE
    Appl Microbiol Biotechnol; 2005 Jul; 68(1):23-30. PubMed ID: 15647935
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Sequential flowing membrane-less microbial fuel cell using bioanode and biocathode as sensing elements for toxicity monitoring.
    Zhao T; Xie B; Yi Y; Liu H
    Bioresour Technol; 2019 Mar; 276():276-280. PubMed ID: 30640022
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The performance of a microbial fuel cell depends strongly on anode geometry: a multidimensional modeling study.
    Merkey BV; Chopp DL
    Bull Math Biol; 2012 Apr; 74(4):834-57. PubMed ID: 22015479
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Microbially-reduced graphene scaffolds to facilitate extracellular electron transfer in microbial fuel cells.
    Yuan Y; Zhou S; Zhao B; Zhuang L; Wang Y
    Bioresour Technol; 2012 Jul; 116():453-8. PubMed ID: 22534371
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Power overshoot in two-chambered microbial fuel cell (MFC).
    Nien PC; Lee CY; Ho KC; Adav SS; Liu L; Wang A; Ren N; Lee DJ
    Bioresour Technol; 2011 Apr; 102(7):4742-6. PubMed ID: 21295969
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Influence of terminal electron acceptor availability to the anodic oxidation on the electrogenic activity of microbial fuel cell (MFC).
    Srikanth S; Venkata Mohan S
    Bioresour Technol; 2012 Nov; 123():480-7. PubMed ID: 22940358
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Affinity of microbial fuel cell biofilm for the anodic potential.
    Cheng KY; Ho G; Cord-Ruwisch R
    Environ Sci Technol; 2008 May; 42(10):3828-34. PubMed ID: 18546730
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Carbon nanotube powders as electrode modifier to enhance the activity of anodic biofilm in microbial fuel cells.
    Liang P; Wang H; Xia X; Huang X; Mo Y; Cao X; Fan M
    Biosens Bioelectron; 2011 Feb; 26(6):3000-4. PubMed ID: 21190836
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Separation of cesium from wastewater with copper hexacyanoferrate film in an electrochemical system driven by microbial fuel cells.
    Tao Q; Zhang X; Prabaharan K; Dai Y
    Bioresour Technol; 2019 Apr; 278():456-459. PubMed ID: 30711219
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.