These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
264 related articles for article (PubMed ID: 24942503)
1. Directly drawn poly(3-hexylthiophene) field-effect transistors by electrohydrodynamic jet printing: improving performance with surface modification. Jeong YJ; Lee H; Lee BS; Park S; Yudistira HT; Choong CL; Park JJ; Park CE; Byun D ACS Appl Mater Interfaces; 2014 Jul; 6(13):10736-43. PubMed ID: 24942503 [TBL] [Abstract][Full Text] [Related]
2. Directionally Aligned Amorphous Polymer Chains via Electrohydrodynamic-Jet Printing: Analysis of Morphology and Polymer Field-Effect Transistor Characteristics. Kim Y; Bae J; Song HW; An TK; Kim SH; Kim YH; Park CE ACS Appl Mater Interfaces; 2017 Nov; 9(45):39493-39501. PubMed ID: 29058867 [TBL] [Abstract][Full Text] [Related]
3. Electrohydrodynamic-Jet-Printed Phthalimide-Derived Conjugated Polymers for Organic Field-Effect Transistors and Logic Gates. Li Z; Jeong YJ; Hong J; Kwon HJ; Ye H; Wang R; Choi HH; Kong H; Hwang H; Kim SH; Tang X ACS Appl Mater Interfaces; 2022 Feb; 14(5):7073-7081. PubMed ID: 35080374 [TBL] [Abstract][Full Text] [Related]
4. The effect of surfactants on electrohydrodynamic jet printing and the performance of organic field-effect transistors. Li X; Jeong YJ; Jang J; Lim S; Kim SH Phys Chem Chem Phys; 2018 Jan; 20(2):1210-1220. PubMed ID: 29243751 [TBL] [Abstract][Full Text] [Related]
5. Effects of surface characteristics of dielectric layers on polymer thin-film transistors obtained by spray methods. Park HY; Jin JS; Yim S; Oh SH; Kang PH; Choi SK; Jang SY Phys Chem Chem Phys; 2013 Mar; 15(11):3718-24. PubMed ID: 23389481 [TBL] [Abstract][Full Text] [Related]
6. Fabrication of organic field effect transistor by directly grown poly(3 hexylthiophene) crystalline nanowires on carbon nanotube aligned array electrode. Sarker BK; Liu J; Zhai L; Khondaker SI ACS Appl Mater Interfaces; 2011 Apr; 3(4):1180-5. PubMed ID: 21405101 [TBL] [Abstract][Full Text] [Related]
7. Solution processable high dielectric constant nanocomposites based on ZrO2 nanoparticles for flexible organic transistors. Beaulieu MR; Baral JK; Hendricks NR; Tang Y; BriseƱo AL; Watkins JJ ACS Appl Mater Interfaces; 2013 Dec; 5(24):13096-103. PubMed ID: 24328123 [TBL] [Abstract][Full Text] [Related]
8. Periodic array of polyelectrolyte-gated organic transistors from electrospun poly(3-hexylthiophene) nanofibers. Lee SW; Lee HJ; Choi JH; Koh WG; Myoung JM; Hur JH; Park JJ; Cho JH; Jeong U Nano Lett; 2010 Jan; 10(1):347-51. PubMed ID: 19994870 [TBL] [Abstract][Full Text] [Related]
9. Bar-Coated Ultrathin Semiconductors from Polymer Blend for One-Step Organic Field-Effect Transistors. Ge F; Liu Z; Lee SB; Wang X; Zhang G; Lu H; Cho K; Qiu L ACS Appl Mater Interfaces; 2018 Jun; 10(25):21510-21517. PubMed ID: 29873226 [TBL] [Abstract][Full Text] [Related]
10. Performance and stability of aerosol-jet-printed electrolyte-gated transistors based on poly(3-hexylthiophene). Kim SH; Hong K; Lee KH; Frisbie CD ACS Appl Mater Interfaces; 2013 Jul; 5(14):6580-5. PubMed ID: 23823333 [TBL] [Abstract][Full Text] [Related]
11. High-performance field-effect transistors based on polystyrene-b-poly(3-hexylthiophene) diblock copolymers. Yu X; Xiao K; Chen J; Lavrik NV; Hong K; Sumpter BG; Geohegan DB ACS Nano; 2011 May; 5(5):3559-67. PubMed ID: 21456581 [TBL] [Abstract][Full Text] [Related]
13. Direct Writing and Aligning of Small-Molecule Organic Semiconductor Crystals via "Dragging Mode" Electrohydrodynamic Jet Printing for Flexible Organic Field-Effect Transistor Arrays. Kim K; Bae J; Noh SH; Jang J; Kim SH; Park CE J Phys Chem Lett; 2017 Nov; 8(22):5492-5500. PubMed ID: 29083198 [TBL] [Abstract][Full Text] [Related]
14. Poly(3-hexylthiophene) (P3HT)/graphene nanocomposite material based organic field effect transistor with enhanced mobility. Tiwari S; Singh AK; Prakash R J Nanosci Nanotechnol; 2014 Apr; 14(4):2823-8. PubMed ID: 24734696 [TBL] [Abstract][Full Text] [Related]
15. Electrohydrodynamic-Jet (EHD)-Printed Diketopyrrolopyroole-Based Copolymer for OFETs and Circuit Applications. Kim K; Kim SH; Cheon H; Tang X; Oh JH; Jhon H; Jeon J; Kim YH; An TK Polymers (Basel); 2019 Oct; 11(11):. PubMed ID: 31717795 [TBL] [Abstract][Full Text] [Related]
16. Large area polymer semiconductor sub-microwire arrays by coaxial focused electrohydrodynamic jet printing for high-performance OFETs. Wang D; Lu L; Zhao Z; Zhao K; Zhao X; Pu C; Li Y; Xu P; Chen X; Guo Y; Suo L; Liang J; Cui Y; Liu Y Nat Commun; 2022 Oct; 13(1):6214. PubMed ID: 36266282 [TBL] [Abstract][Full Text] [Related]
17. Optimized coaxial focused electrohydrodynamic jet printing of highly ordered semiconductor sub-microwire arrays for high-performance organic field-effect transistors. Lu L; Wang D; Zhao Z; Li Y; Pu C; Xu P; Chen X; Liu C; Liang S; Suo L; Liang J; Cui Y; Guo Y; Liu Y Nanoscale; 2023 Jan; 15(4):1880-1889. PubMed ID: 36606492 [TBL] [Abstract][Full Text] [Related]
18. Multifunctional phosphonic acid self-assembled monolayers on metal oxides as dielectrics, interface modification layers and semiconductors for low-voltage high-performance organic field-effect transistors. Ma H; Acton O; Hutchins DO; Cernetic N; Jen AK Phys Chem Chem Phys; 2012 Nov; 14(41):14110-26. PubMed ID: 22767209 [TBL] [Abstract][Full Text] [Related]
19. High-performance low-voltage organic field-effect transistors prepared on electro-polished aluminum wires. Nam S; Jang J; Park JJ; Kim SW; Park CE; Kim JM ACS Appl Mater Interfaces; 2012 Jan; 4(1):6-10. PubMed ID: 22175700 [TBL] [Abstract][Full Text] [Related]
20. Interface engineering: an effective approach toward high-performance organic field-effect transistors. Di CA; Liu Y; Yu G; Zhu D Acc Chem Res; 2009 Oct; 42(10):1573-83. PubMed ID: 19645474 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]