These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
134 related articles for article (PubMed ID: 2494251)
1. Halothane-induced hepatic microsomal lipid peroxidation in guinea pigs and rats. Akita S; Kawahara M; Takeshita T; Morio M; Fujii K J Appl Toxicol; 1989 Feb; 9(1):9-14. PubMed ID: 2494251 [TBL] [Abstract][Full Text] [Related]
2. Effects of multiple administration of halothane on the mixed function oxidase system in liver microsomes. Difference between guinea pigs and rats. Akita A; Morio M; Kawahara M; Takeshita T; Fujii K In Vivo; 1987; 1(6):369-72. PubMed ID: 2979806 [TBL] [Abstract][Full Text] [Related]
3. Halothane-induced liver injury as a consequence of enhanced microsomal lipid peroxidation in guinea pigs. Akita S; Morio M; Kawahara M; Takeshita T; Fujii K; Yamamoto M Res Commun Chem Pathol Pharmacol; 1988 Aug; 61(2):227-43. PubMed ID: 3187193 [TBL] [Abstract][Full Text] [Related]
4. Effect of cholesterol feeding on tissue lipid perioxidation, glutathione peroxidase activity and liver microsomal functions in rats and guinea pigs. Tsai AC; Thie GM; Lin CR J Nutr; 1977 Feb; 107(2):310-9. PubMed ID: 13170 [TBL] [Abstract][Full Text] [Related]
5. Cadmium sensitivity differences between liver microsomal drug metabolizing enzyme systems of guinea-pig and rat. Işcan M; Karakaya A Comp Biochem Physiol C Comp Pharmacol Toxicol; 1988; 90(1):101-5. PubMed ID: 2904851 [TBL] [Abstract][Full Text] [Related]
6. Mechanisms responsible for the thermal sensitivity of adrenal microsomal monooxygenases. Colby HD; Johnson PB; Pope MR Drug Metab Dispos; 1991; 19(3):679-82. PubMed ID: 1680636 [TBL] [Abstract][Full Text] [Related]
7. Depression of mouse liver microsomal mixed function oxidase enzymes by adriamycin. Mungikar AM; Gothoskar BP Toxicol Lett; 1985 Dec; 29(1):17-23. PubMed ID: 3936235 [TBL] [Abstract][Full Text] [Related]
8. Rabbit liver microsomal lipid peroxidation. The effect of lipid on the rate of peroxidation. Tien M; Aust SD Biochim Biophys Acta; 1982 Jul; 712(1):1-9. PubMed ID: 6810940 [TBL] [Abstract][Full Text] [Related]
9. The association of halothane-induced lipid peroxidation with the anaerobic metabolism of halothane: an in vitro study in guinea pig liver microsomes. Sato N; Fujii K; Yuge O; Morio M Hiroshima J Med Sci; 1990 Mar; 39(1):1-6. PubMed ID: 2373636 [TBL] [Abstract][Full Text] [Related]
10. Anaerobic dehalogenation of halothane by reconstituted liver microsomal cytochrome P-450 enzyme system. Fujii K; Miki N; Sugiyama T; Morio M; Yamano T; Miyake Y Biochem Biophys Res Commun; 1981 Sep; 102(1):507-12. PubMed ID: 6796089 [No Abstract] [Full Text] [Related]
11. A new and suitable reconstructed system for NADPH-dependent microsomal lipid peroxidation. Minakami H; Arai H; Nakano M; Sugioka K; Suzuki S; Sotomatsu A Biochem Biophys Res Commun; 1988 Jun; 153(3):973-8. PubMed ID: 2839175 [TBL] [Abstract][Full Text] [Related]
12. Isoflurane acts as an inhibitor of oxidative dehalogenation while acting as an accelerator of reductive dehalogenation of halothane in guinea pig liver microsomes. Fujii K Toxicology; 1995 Dec; 104(1-3):123-8. PubMed ID: 8560490 [TBL] [Abstract][Full Text] [Related]
14. Halothane-dependent lipid peroxidation in human liver microsomes is catalyzed by cytochrome P4502A6 (CYP2A6). Minoda Y; Kharasch ED Anesthesiology; 2001 Aug; 95(2):509-14. PubMed ID: 11506127 [TBL] [Abstract][Full Text] [Related]
15. Changes in rat hepatic microsomal mixed function oxidase activity following exposure to halothane under various oxygen concentrations. Knights KM; Gourlay GK; Cousins MJ Biochem Pharmacol; 1987 Mar; 36(6):897-906. PubMed ID: 3105540 [TBL] [Abstract][Full Text] [Related]
16. Drug metabolism in experimental tuberculosis: I. Changes in hepatic and pulmonary monooxygenase activities due to infection. Batra JK; Venkitasubramanian TA; Raj HG Eur J Drug Metab Pharmacokinet; 1987; 12(2):109-14. PubMed ID: 3121338 [TBL] [Abstract][Full Text] [Related]
17. A comparative study of liver mixed function oxidases in camels (Camelus dromedarius), guinea pigs (Cavia porcellus) and rats (Rattus norvegicus). Damanhouri ZA; Tayeb OS Comp Biochem Physiol C Comp Pharmacol Toxicol; 1993 Jul; 105(3):487-91. PubMed ID: 7693392 [TBL] [Abstract][Full Text] [Related]
18. Examination for lipid peroxidation in liver microsomes of guinea pigs as a causal factor in the decrease in the content of cytochrome P-450 due to ascorbic acid deficiency. Mori T; Kitamura R; Imaoka S; Funae Y; Kitada M; Kamataki T Res Commun Chem Pathol Pharmacol; 1992 Feb; 75(2):209-19. PubMed ID: 1373902 [TBL] [Abstract][Full Text] [Related]
19. Halothane-induced liver injury in guinea-pigs: importance of cytochrome P450 enzyme activity and hepatic blood flow. Farrell GC; Frost L; Tapner M; Field J; Weltman M; Mahoney J J Gastroenterol Hepatol; 1996 Jun; 11(6):594-601. PubMed ID: 8792316 [TBL] [Abstract][Full Text] [Related]
20. Indications for adaptation to differently high vitamin C supplies in guinea pigs. 2. Development of hepatic amounts of microsomal protein and cytochromes (P-450, b5) after altered dosing. Degkwitz E; Bödeker RH Z Ernahrungswiss; 1989 Dec; 28(4):338-44. PubMed ID: 2618110 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]