BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

241 related articles for article (PubMed ID: 24942645)

  • 1. Effect of temporal acquisition parameters on image quality of strain time constant elastography.
    Nair S; Varghese J; Chaudhry A; Righetti R
    Ultrason Imaging; 2015 Apr; 37(2):87-100. PubMed ID: 24942645
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Performance analysis of a new real-time elastographic time constant estimator.
    Nair SP; Yang X; Krouskop TA; Righetti R
    IEEE Trans Med Imaging; 2011 Feb; 30(2):497-511. PubMed ID: 20952333
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Assessing image quality in effective Poisson's ratio elastography and poroelastography: II.
    Righetti R; Ophir J; Kumar AT; Krouskop TA
    Phys Med Biol; 2007 Mar; 52(5):1321-33. PubMed ID: 17301457
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Robust Method to Estimate the Time Constant of Elastographic Parameters.
    Islam MT; Chaudhry A; Righetti R
    IEEE Trans Med Imaging; 2019 Jun; 38(6):1358-1370. PubMed ID: 30703014
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Assessing image quality in effective Poisson's ratio elastography and poroelastography: I.
    Righetti R; Srinivasan S; Kumar AT; Ophir J; Krouskop TA
    Phys Med Biol; 2007 Mar; 52(5):1303-20. PubMed ID: 17301456
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Spline Interpolation-based Data Reconstruction Technique for Estimation of Strain Time Constant in Ultrasound Poroelastography.
    Islam MT; Righetti R
    Ultrason Imaging; 2020 Jan; 42(1):5-14. PubMed ID: 31937211
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The feasibility of estimating and imaging the mechanical behavior of poroelastic materials using axial strain elastography.
    Righetti R; Righetti M; Ophir J; Krouskop TA
    Phys Med Biol; 2007 Jun; 52(11):3241-59. PubMed ID: 17505100
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Corrections to the displacement estimation based on analytic minimization of adaptive regularized cost functions for ultrasound elastography.
    Peng B; Lai J; Wang L; Liu DC
    Biomed Mater Eng; 2014; 24(6):2801-10. PubMed ID: 25226985
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Signal-to-noise ratio, contrast-to-noise ratio and their trade-offs with resolution in axial-shear strain elastography.
    Thitaikumar A; Krouskop TA; Ophir J
    Phys Med Biol; 2007 Jan; 52(1):13-28. PubMed ID: 17183125
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Robust strain-estimation algorithm using combined radiofrequency and envelope cross-correlation with diffusion filtering.
    Hussain MA; Alam SK; Lees SY; Hasan MK
    Ultrason Imaging; 2012 Apr; 34(2):93-109. PubMed ID: 22724315
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ultrasound frame rate requirements for cardiac elastography: experimental and in vivo results.
    Chen H; Varghese T; Rahko PS; Zagzebski JA
    Ultrasonics; 2009 Jan; 49(1):98-111. PubMed ID: 18657839
    [TBL] [Abstract][Full Text] [Related]  

  • 12. On the differences between two-dimensional and three-dimensional simulations for assessing elastographic image quality: a simulation study.
    Patil AV; Krouskop TA; Ophir J; Srinivasan S
    Ultrasound Med Biol; 2008 Jul; 34(7):1129-38. PubMed ID: 18343016
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Performance evaluation of methods for two-dimensional displacement and strain estimation using ultrasound radio frequency data.
    Lopata RG; Nillesen MM; Hansen HH; Gerrits IH; Thijssen JM; de Korte CL
    Ultrasound Med Biol; 2009 May; 35(5):796-812. PubMed ID: 19282094
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Viscoelastic parameter estimation based on spectral analysis.
    Eskandari H; Salcudean SE; Rohling R
    IEEE Trans Ultrason Ferroelectr Freq Control; 2008 Jul; 55(7):1611-25. PubMed ID: 18986951
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Theoretical derivation of SNR, CNR and spatial resolution for a local adaptive strain estimator for elastography.
    Srinivasan S; Ophir J; Alam SK
    Ultrasound Med Biol; 2004 Sep; 30(9):1185-97. PubMed ID: 15550322
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Elasticity imaging using conventional and high-frame rate ultrasound imaging: experimental study.
    Park S; Aglyamov SR; Emelianov SY
    IEEE Trans Ultrason Ferroelectr Freq Control; 2007 Nov; 54(11):2246-56. PubMed ID: 18051159
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of permeability on the performance of elastographic imaging techniques.
    Chaudhry A; Unnikrishnan G; Reddy JN; Krouskop TA; Righetti R
    IEEE Trans Med Imaging; 2013 Feb; 32(2):189-99. PubMed ID: 23033327
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Frequency-domain-based strain estimation and high-frame-rate imaging for quasi-static elastography.
    Ramalli A; Basset O; Cachard C; Boni E; Tortoli P
    IEEE Trans Ultrason Ferroelectr Freq Control; 2012 Apr; 59(4):817-24. PubMed ID: 22547293
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optimization of a Pixel-to-Pixel Curve-Fitting Method for Poroelastography Imaging.
    Galaz BA; Acevedo RH
    Ultrasound Med Biol; 2017 Jan; 43(1):309-322. PubMed ID: 27765386
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Angular strain estimation method for elastography.
    Bae U; Kim Y
    IEEE Trans Ultrason Ferroelectr Freq Control; 2007 Dec; 54(12):2653-61. PubMed ID: 18276572
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.