BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 24942835)

  • 1. X-ray structure of a CDP-alcohol phosphatidyltransferase membrane enzyme and insights into its catalytic mechanism.
    Nogly P; Gushchin I; Remeeva A; Esteves AM; Borges N; Ma P; Ishchenko A; Grudinin S; Round E; Moraes I; Borshchevskiy V; Santos H; Gordeliy V; Archer M
    Nat Commun; 2014 Jun; 5():4169. PubMed ID: 24942835
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural basis for catalysis in a CDP-alcohol phosphotransferase.
    Sciara G; Clarke OB; Tomasek D; Kloss B; Tabuso S; Byfield R; Cohn R; Banerjee S; Rajashankar KR; Slavkovic V; Graziano JH; Shapiro L; Mancia F
    Nat Commun; 2014 Jun; 5():4068. PubMed ID: 24923293
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Crystal structure of A. fulgidus Rio2 defines a new family of serine protein kinases.
    LaRonde-LeBlanc N; Wlodawer A
    Structure; 2004 Sep; 12(9):1585-94. PubMed ID: 15341724
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reaching for mechanistic consensus across life kingdoms: structure and insights into catalysis of the myo-inositol-1-phosphate synthase (mIPS) from Archaeoglobus fulgidus.
    Stieglitz KA; Yang H; Roberts MF; Stec B
    Biochemistry; 2005 Jan; 44(1):213-24. PubMed ID: 15628862
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural insights into the second step of RNA-dependent cysteine biosynthesis in archaea: crystal structure of Sep-tRNA:Cys-tRNA synthase from Archaeoglobus fulgidus.
    Fukunaga R; Yokoyama S
    J Mol Biol; 2007 Jun; 370(1):128-41. PubMed ID: 17512006
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Crystal structure of Archaeoglobus fulgidus CTP:inositol-1-phosphate cytidylyltransferase, a key enzyme for di-myo-inositol-phosphate synthesis in (hyper)thermophiles.
    Brito JA; Borges N; Vonrhein C; Santos H; Archer M
    J Bacteriol; 2011 May; 193(9):2177-85. PubMed ID: 21378188
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Crystal structure and CRISPR RNA-binding site of the Cmr1 subunit of the Cmr interference complex.
    Sun J; Jeon JH; Shin M; Shin HC; Oh BH; Kim JS
    Acta Crystallogr D Biol Crystallogr; 2014 Feb; 70(Pt 2):535-43. PubMed ID: 24531487
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Crystal structure of a PIN (PilT N-terminus) domain (AF0591) from Archaeoglobus fulgidus at 1.90 A resolution.
    Levin I; Schwarzenbacher R; Page R; Abdubek P; Ambing E; Biorac T; Brinen LS; Campbell J; Canaves JM; Chiu HJ; Dai X; Deacon AM; DiDonato M; Elsliger MA; Floyd R; Godzik A; Grittini C; Grzechnik SK; Hampton E; Jaroszewski L; Karlak C; Klock HE; Koesema E; Kovarik JS; Kreusch A; Kuhn P; Lesley SA; McMullan D; McPhillips TM; Miller MD; Morse A; Moy K; Ouyang J; Quijano K; Reyes R; Rezezadeh F; Robb A; Sims E; Spraggon G; Stevens RC; van den Bedem H; Velasquez J; Vincent J; von Delft F; Wang X; West B; Wolf G; Xu Q; Hodgson KO; Wooley J; Wilson IA
    Proteins; 2004 Aug; 56(2):404-8. PubMed ID: 15211526
    [No Abstract]   [Full Text] [Related]  

  • 9. Divergent evolutions of trinucleotide polymerization revealed by an archaeal CCA-adding enzyme structure.
    Okabe M; Tomita K; Ishitani R; Ishii R; Takeuchi N; Arisaka F; Nureki O; Yokoyama S
    EMBO J; 2003 Nov; 22(21):5918-27. PubMed ID: 14592988
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A soluble mutant of the transmembrane receptor Af1503 features strong changes in coiled-coil periodicity.
    Hartmann MD; Dunin-Horkawicz S; Hulko M; Martin J; Coles M; Lupas AN
    J Struct Biol; 2014 Jun; 186(3):357-66. PubMed ID: 24568954
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural insight into substrate binding and catalysis of a novel 2-keto-3-deoxy-D-arabinonate dehydratase illustrates common mechanistic features of the FAH superfamily.
    Brouns SJ; Barends TR; Worm P; Akerboom J; Turnbull AP; Salmon L; van der Oost J
    J Mol Biol; 2008 May; 379(2):357-71. PubMed ID: 18448118
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Crystal structure of archaeal highly thermostable L-aspartate dehydrogenase/NAD/citrate ternary complex.
    Yoneda K; Sakuraba H; Tsuge H; Katunuma N; Ohshima T
    FEBS J; 2007 Aug; 274(16):4315-25. PubMed ID: 17651440
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Crystal structure of the C-terminal globular domain of the third paralog of the Archaeoglobus fulgidus oligosaccharyltransferases.
    Matsumoto S; Shimada A; Kohda D
    BMC Struct Biol; 2013 Jul; 13():11. PubMed ID: 23815857
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Crystal structure of a SIR2 homolog-NAD complex.
    Min J; Landry J; Sternglanz R; Xu RM
    Cell; 2001 Apr; 105(2):269-79. PubMed ID: 11336676
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Forms of LonB protease from Archaeoglobus fulgidus devoid of the transmembrane domain: the contribution of the quaternary structure to the regulation of enzyme proteolytic activity].
    Makhovskaia OV; Kozlov S; Botos I; Stepnov AA; Andrianova AG; Gushchina AE; Vlodaver A; Mel'nikov EE; Rotanova TV
    Bioorg Khim; 2007; 33(6):657-60. PubMed ID: 18173131
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural biochemistry of a type 2 RNase H: RNA primer recognition and removal during DNA replication.
    Chapados BR; Chai Q; Hosfield DJ; Qiu J; Shen B; Tainer JA
    J Mol Biol; 2001 Mar; 307(2):541-56. PubMed ID: 11254381
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Crystal structure of a PIWI protein suggests mechanisms for siRNA recognition and slicer activity.
    Parker JS; Roe SM; Barford D
    EMBO J; 2004 Dec; 23(24):4727-37. PubMed ID: 15565169
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structure and activity of the atypical serine kinase Rio1.
    Laronde-Leblanc N; Guszczynski T; Copeland T; Wlodawer A
    FEBS J; 2005 Jul; 272(14):3698-713. PubMed ID: 16008568
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The promiscuous phosphomonoestearase activity of Archaeoglobus fulgidus CopA, a thermophilic Cu+ transport ATPase.
    Bredeston LM; González Flecha FL
    Biochim Biophys Acta; 2016 Jul; 1858(7 Pt A):1471-8. PubMed ID: 27086711
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tethering an N-Glycosylation Sequon-Containing Peptide Creates a Catalytically Competent Oligosaccharyltransferase Complex.
    Matsumoto S; Taguchi Y; Shimada A; Igura M; Kohda D
    Biochemistry; 2017 Jan; 56(4):602-611. PubMed ID: 27997792
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.