BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 24942885)

  • 1. A unique gene cluster for the utilization of the mucosal and human milk-associated glycans galacto-N-biose and lacto-N-biose in Lactobacillus casei.
    Bidart GN; Rodríguez-Díaz J; Monedero V; Yebra MJ
    Mol Microbiol; 2014 Aug; 93(3):521-38. PubMed ID: 24942885
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Human milk and mucosal lacto- and galacto-N-biose synthesis by transgalactosylation and their prebiotic potential in Lactobacillus species.
    Bidart GN; Rodríguez-Díaz J; Palomino-Schätzlein M; Monedero V; Yebra MJ
    Appl Microbiol Biotechnol; 2017 Jan; 101(1):205-215. PubMed ID: 27714445
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Function and Structure of
    Saburi W; Ota T; Kato K; Tagami T; Yamashita K; Yao M; Mori H
    J Appl Glycosci (1999); 2023; 70(2):43-52. PubMed ID: 37599861
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of lacto-N-Biose I phosphorylase from Vibrio vulnificus CMCP6.
    Nakajima M; Kitaoka M
    Appl Environ Microbiol; 2008 Oct; 74(20):6333-7. PubMed ID: 18723650
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The lactose operon from Lactobacillus casei is involved in the transport and metabolism of the human milk oligosaccharide core-2 N-acetyllactosamine.
    Bidart GN; Rodríguez-Díaz J; Pérez-Martínez G; Yebra MJ
    Sci Rep; 2018 May; 8(1):7152. PubMed ID: 29740087
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of N-acetylhexosamine 1-kinase in the complete lacto-N-biose I/galacto-N-biose metabolic pathway in Bifidobacterium longum.
    Nishimoto M; Kitaoka M
    Appl Environ Microbiol; 2007 Oct; 73(20):6444-9. PubMed ID: 17720833
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural and thermodynamic analyses of solute-binding Protein from Bifidobacterium longum specific for core 1 disaccharide and lacto-N-biose I.
    Suzuki R; Wada J; Katayama T; Fushinobu S; Wakagi T; Shoun H; Sugimoto H; Tanaka A; Kumagai H; Ashida H; Kitaoka M; Yamamoto K
    J Biol Chem; 2008 May; 283(19):13165-73. PubMed ID: 18332142
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Large scale production of lacto-
    Nishimoto M
    Biosci Biotechnol Biochem; 2020 Jan; 84(1):17-24. PubMed ID: 31566084
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Extracellular Wall-Bound β-N-Acetylglucosaminidase from Lactobacillus casei Is Involved in the Metabolism of the Human Milk Oligosaccharide Lacto-N-Triose.
    Bidart GN; Rodríguez-Díaz J; Yebra MJ
    Appl Environ Microbiol; 2016 Jan; 82(2):570-7. PubMed ID: 26546429
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lactobacillus casei ferments the N-Acetylglucosamine moiety of fucosyl-α-1,3-N-acetylglucosamine and excretes L-fucose.
    Rodríguez-Díaz J; Rubio-del-Campo A; Yebra MJ
    Appl Environ Microbiol; 2012 Jul; 78(13):4613-9. PubMed ID: 22544237
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Human milk and mucosa-associated disaccharides impact on cultured infant fecal microbiota.
    Rubio-Del-Campo A; Alcántara C; Collado MC; Rodríguez-Díaz J; Yebra MJ
    Sci Rep; 2020 Jul; 10(1):11845. PubMed ID: 32678209
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bifidobacterial enzymes involved in the metabolism of human milk oligosaccharides.
    Kitaoka M
    Adv Nutr; 2012 May; 3(3):422S-9S. PubMed ID: 22585921
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Distribution of in vitro fermentation ability of lacto-N-biose I, a major building block of human milk oligosaccharides, in bifidobacterial strains.
    Xiao JZ; Takahashi S; Nishimoto M; Odamaki T; Yaeshima T; Iwatsuki K; Kitaoka M
    Appl Environ Microbiol; 2010 Jan; 76(1):54-9. PubMed ID: 19854932
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of galacto-N-biose phosphorylase from Clostridium perfringens ATCC13124.
    Nakajima M; Nihira T; Nishimoto M; Kitaoka M
    Appl Microbiol Biotechnol; 2008 Mar; 78(3):465-71. PubMed ID: 18183385
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lactobacillus casei 64H contains a phosphoenolpyruvate-dependent phosphotransferase system for uptake of galactose, as confirmed by analysis of ptsH and different gal mutants.
    Bettenbrock K; Siebers U; Ehrenreich P; Alpert CA
    J Bacteriol; 1999 Jan; 181(1):225-30. PubMed ID: 9864334
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Utilization of D-ribitol by Lactobacillus casei BL23 requires a mannose-type phosphotransferase system and three catabolic enzymes.
    Bourand A; Yebra MJ; Boël G; Mazé A; Deutscher J
    J Bacteriol; 2013 Jun; 195(11):2652-61. PubMed ID: 23564164
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular analysis of the glucose-specific phosphoenolpyruvate : sugar phosphotransferase system from Lactobacillus casei and its links with the control of sugar metabolism.
    Yebra MJ; Monedero V; Zúñiga M; Deutscher J; Pérez-Martínez G
    Microbiology (Reading); 2006 Jan; 152(Pt 1):95-104. PubMed ID: 16385119
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genetics of L-sorbose transport and metabolism in Lactobacillus casei.
    Yebra MJ; Veyrat A; Santos MA; Pérez-Martínez G
    J Bacteriol; 2000 Jan; 182(1):155-63. PubMed ID: 10613875
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Preparative scale purification of fucosyl-N-acetylglucosamine disaccharides and their evaluation as potential prebiotics and antiadhesins.
    Becerra JE; Coll-Marqués JM; Rodríguez-Díaz J; Monedero V; Yebra MJ
    Appl Microbiol Biotechnol; 2015 Sep; 99(17):7165-76. PubMed ID: 25977209
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Infant gut microbiota modulation by human milk disaccharides in humanized microbiome mice.
    Rubio-Del-Campo A; Gozalbo-Rovira R; Moya-Gonzálvez EM; Alberola J; Rodríguez-Díaz J; Yebra MJ
    Gut Microbes; 2021; 13(1):1-20. PubMed ID: 33938391
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.