BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 24943369)

  • 1. Independently recruited oxidases from the glucose-methanol-choline oxidoreductase family enabled chemical defences in leaf beetle larvae (subtribe Chrysomelina) to evolve.
    Rahfeld P; Kirsch R; Kugel S; Wielsch N; Stock M; Groth M; Boland W; Burse A
    Proc Biol Sci; 2014 Aug; 281(1788):20140842. PubMed ID: 24943369
    [TBL] [Abstract][Full Text] [Related]  

  • 2. To be or not to be convergent in salicin-based defence in chrysomeline leaf beetle larvae: evidence from Phratora vitellinae salicyl alcohol oxidase.
    Kirsch R; Vogel H; Muck A; Vilcinskas A; Pasteels JM; Boland W
    Proc Biol Sci; 2011 Nov; 278(1722):3225-32. PubMed ID: 21429930
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Glandular β-glucosidases in juvenile Chrysomelina leaf beetles support the evolution of a host-plant-dependent chemical defense.
    Rahfeld P; Haeger W; Kirsch R; Pauls G; Becker T; Schulze E; Wielsch N; Wang D; Groth M; Brandt W; Boland W; Burse A
    Insect Biochem Mol Biol; 2015 Mar; 58():28-38. PubMed ID: 25596091
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Precise RNAi-mediated silencing of metabolically active proteins in the defence secretions of juvenile leaf beetles.
    Bodemann RR; Rahfeld P; Stock M; Kunert M; Wielsch N; Groth M; Frick S; Boland W; Burse A
    Proc Biol Sci; 2012 Oct; 279(1745):4126-34. PubMed ID: 22874750
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Salicyl alcohol oxidase of the chemical defense secretion of two chrysomelid leaf beetles. Molecular and functional characterization of two new members of the glucose-methanol-choline oxidoreductase gene family.
    Michalski C; Mohagheghi H; Nimtz M; Pasteels J; Ober D
    J Biol Chem; 2008 Jul; 283(28):19219-28. PubMed ID: 18482980
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A cytochrome P450 from the mustard leaf beetles hydroxylates geraniol, a key step in iridoid biosynthesis.
    Fu N; Yang ZL; Pauchet Y; Paetz C; Brandt W; Boland W; Burse A
    Insect Biochem Mol Biol; 2019 Oct; 113():103212. PubMed ID: 31425853
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Putative sugar transporters of the mustard leaf beetle Phaedon cochleariae: their phylogeny and role for nutrient supply in larval defensive glands.
    Stock M; Gretscher RR; Groth M; Eiserloh S; Boland W; Burse A
    PLoS One; 2013; 8(12):e84461. PubMed ID: 24391959
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Implication of HMGR in homeostasis of sequestered and de novo produced precursors of the iridoid biosynthesis in leaf beetle larvae.
    Burse A; Frick S; Schmidt A; Buechler R; Kunert M; Gershenzon J; Brandt W; Boland W
    Insect Biochem Mol Biol; 2008 Jan; 38(1):76-88. PubMed ID: 18070667
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Deciphering the route to cyclic monoterpenes in Chrysomelina leaf beetles: source of new biocatalysts for industrial application?
    Burse A; Boland W
    Z Naturforsch C J Biosci; 2017 Sep; 72(9-10):417-427. PubMed ID: 28593879
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of an extracellular salicyl alcohol oxidase from larval defensive secretions of Chrysomela populi and Phratora vitellinae (Chrysomelina).
    Brückmann M; Termonia A; Pasteels JM; Hartmann T
    Insect Biochem Mol Biol; 2002 Nov; 32(11):1517-23. PubMed ID: 12530219
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Iridoid biosynthesis in Chrysomelina larvae: Fat body produces early terpenoid precursors.
    Burse A; Schmidt A; Frick S; Kuhn J; Gershenzon J; Boland W
    Insect Biochem Mol Biol; 2007 Mar; 37(3):255-65. PubMed ID: 17296500
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Are iridoids in leaf beetle larvae synthesized de novo or derived from plant precursors? A methodological approach.
    Søe AR; Bartram S; Gatto N; Boland W
    Isotopes Environ Health Stud; 2004 Sep; 40(3):175-80. PubMed ID: 15370280
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Strategies of chemical anti-predator defences in leaf beetles: is sequestration of plant toxins less costly than de novo synthesis?
    Zvereva EL; Zverev V; Kruglova OY; Kozlov MV
    Oecologia; 2017 Jan; 183(1):93-106. PubMed ID: 27718063
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Always being well prepared for defense: the production of deterrents by juvenile Chrysomelina beetles (Chrysomelidae).
    Burse A; Frick S; Discher S; Tolzin-Banasch K; Kirsch R; Strauss A; Kunert M; Boland W
    Phytochemistry; 2009; 70(15-16):1899-909. PubMed ID: 19733867
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A survey of genes encoding H2O2-producing GMC oxidoreductases in 10 Polyporales genomes.
    Ferreira P; Carro J; Serrano A; Martínez AT
    Mycologia; 2015; 107(6):1105-19. PubMed ID: 26297778
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Iridoid biosynthesis in staphylinid rove beetles (Coleoptera: Staphylinidae, Philonthinae).
    Weibel DB; Oldham NJ; Feld B; Glombitza G; Dettner K; Boland W
    Insect Biochem Mol Biol; 2001 Apr; 31(6-7):583-91. PubMed ID: 11267897
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tissue-specific profiling of membrane proteins in the salicin sequestering juveniles of the herbivorous leaf beetle, Chrysomela populi.
    Schmidt L; Wielsch N; Wang D; Boland W; Burse A
    Insect Biochem Mol Biol; 2019 Jun; 109():81-91. PubMed ID: 30922827
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Selective transport systems mediate sequestration of plant glucosides in leaf beetles: a molecular basis for adaptation and evolution.
    Kuhn J; Pettersson EM; Feld BK; Burse A; Termonia A; Pasteels JM; Boland W
    Proc Natl Acad Sci U S A; 2004 Sep; 101(38):13808-13. PubMed ID: 15365181
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Feeding specialization and host-derived chemical defense in Chrysomeline leaf beetles did not lead to an evolutionary dead end.
    Termonia A; Hsiao TH; Pasteels JM; Milinkovitch MC
    Proc Natl Acad Sci U S A; 2001 Mar; 98(7):3909-14. PubMed ID: 11259651
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Host plant shifts affect a major defense enzyme in Chrysomela lapponica.
    Kirsch R; Vogel H; Muck A; Reichwald K; Pasteels JM; Boland W
    Proc Natl Acad Sci U S A; 2011 Mar; 108(12):4897-901. PubMed ID: 21383196
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.