These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

262 related articles for article (PubMed ID: 24943900)

  • 1. Action and language integration: from humans to cognitive robots.
    Borghi AM; Cangelosi A
    Top Cogn Sci; 2014 Jul; 6(3):344-58. PubMed ID: 24943900
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The grounding of higher order concepts in action and language: a cognitive robotics model.
    Stramandinoli F; Marocco D; Cangelosi A
    Neural Netw; 2012 Aug; 32():165-73. PubMed ID: 22386502
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Grounding language in action and perception: from cognitive agents to humanoid robots.
    Cangelosi A
    Phys Life Rev; 2010 Jun; 7(2):139-51. PubMed ID: 20416855
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The cognitive nature of action - functional links between cognitive psychology, movement science, and robotics.
    Schack T; Ritter H
    Prog Brain Res; 2009; 174():231-50. PubMed ID: 19477343
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Embodied cognition for autonomous interactive robots.
    Hoffman G
    Top Cogn Sci; 2012 Oct; 4(4):759-72. PubMed ID: 22893571
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An embodied model for sensorimotor grounding and grounding transfer: experiments with epigenetic robots.
    Cangelosi A; Riga T
    Cogn Sci; 2006 Jul; 30(4):673-89. PubMed ID: 21702830
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The ITALK project: a developmental robotics approach to the study of individual, social, and linguistic learning.
    Broz F; Nehaniv CL; Belpaeme T; Bisio A; Dautenhahn K; Fadiga L; Ferrauto T; Fischer K; Förster F; Gigliotta O; Griffiths S; Lehmann H; Lohan KS; Lyon C; Marocco D; Massera G; Metta G; Mohan V; Morse A; Nolfi S; Nori F; Peniak M; Pitsch K; Rohlfing KJ; Sagerer G; Sato Y; Saunders J; Schillingmann L; Sciutti A; Tikhanoff V; Wrede B; Zeschel A; Cangelosi A
    Top Cogn Sci; 2014 Jul; 6(3):534-44. PubMed ID: 24934294
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Developmental robotics modeling of the functions of language in action learning: reply to comment on "Grounding language in action and perception: from cognitive agents to humanoid robots".
    Cangelosi A
    Phys Life Rev; 2010 Jun; 7(2):154-5. PubMed ID: 20472514
    [No Abstract]   [Full Text] [Related]  

  • 9. Developmental and Evolutionary Lexicon Acquisition in Cognitive Agents/Robots with Grounding Principle: A Short Review.
    Rasheed N; Amin SH
    Comput Intell Neurosci; 2016; 2016():8571265. PubMed ID: 27069470
    [TBL] [Abstract][Full Text] [Related]  

  • 10. From embodied mind to embodied robotics: humanities and system theoretical aspects.
    Mainzer K
    J Physiol Paris; 2009; 103(3-5):296-304. PubMed ID: 19665560
    [TBL] [Abstract][Full Text] [Related]  

  • 11. From action to language and back Comment on 'Grounding language in action and perception: from cognitive agents to humanoid robots' by Cangelosi.
    Rohlfing KJ; Wrede B
    Phys Life Rev; 2010 Jun; 7(2):152-3. PubMed ID: 20444659
    [No Abstract]   [Full Text] [Related]  

  • 12. On the importance of a rich embodiment in the grounding of concepts: perspectives from embodied cognitive science and computational linguistics.
    Thill S; Padó S; Ziemke T
    Top Cogn Sci; 2014 Jul; 6(3):545-58. PubMed ID: 24948385
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A cognitive neuroscience perspective on embodied language for human-robot cooperation.
    Madden C; Hoen M; Dominey PF
    Brain Lang; 2010 Mar; 112(3):180-8. PubMed ID: 19665218
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Toward a computational framework for cognitive biology: unifying approaches from cognitive neuroscience and comparative cognition.
    Fitch WT
    Phys Life Rev; 2014 Sep; 11(3):329-64. PubMed ID: 24969660
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A computational model of perception and action for cognitive robotics.
    Haazebroek P; van Dantzig S; Hommel B
    Cogn Process; 2011 Nov; 12(4):355-65. PubMed ID: 21597926
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Action-verb processing in Parkinson's disease: new pathways for motor-language coupling.
    Cardona JF; Gershanik O; Gelormini-Lezama C; Houck AL; Cardona S; Kargieman L; Trujillo N; Arévalo A; Amoruso L; Manes F; Ibáñez A
    Brain Struct Funct; 2013 Nov; 218(6):1355-73. PubMed ID: 23412746
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Neural associative memories for the integration of language, vision and action in an autonomous agent.
    Markert H; Kaufmann U; Kara Kayikci Z; Palm G
    Neural Netw; 2009 Mar; 22(2):134-43. PubMed ID: 19203859
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Neural network processing of natural language: II. Towards a unified model of corticostriatal function in learning sentence comprehension and non-linguistic sequencing.
    Dominey PF; Inui T; Hoen M
    Brain Lang; 2009; 109(2-3):80-92. PubMed ID: 18835637
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mirror neurons, language, and embodied cognition.
    Perlovsky LI; Ilin R
    Neural Netw; 2013 May; 41():15-22. PubMed ID: 23403367
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Learning robot actions based on self-organising language memory.
    Wermter S; Elshaw M
    Neural Netw; 2003; 16(5-6):691-9. PubMed ID: 12850024
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.