These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
1155 related articles for article (PubMed ID: 24945095)
1. Beyond the active site: the impact of the outer coordination sphere on electrocatalysts for hydrogen production and oxidation. Ginovska-Pangovska B; Dutta A; Reback ML; Linehan JC; Shaw WJ Acc Chem Res; 2014 Aug; 47(8):2621-30. PubMed ID: 24945095 [TBL] [Abstract][Full Text] [Related]
2. A modular, energy-based approach to the development of nickel containing molecular electrocatalysts for hydrogen production and oxidation. Shaw WJ; Helm ML; DuBois DL Biochim Biophys Acta; 2013; 1827(8-9):1123-39. PubMed ID: 23313415 [TBL] [Abstract][Full Text] [Related]
3. The role of a dipeptide outer-coordination sphere on H2-production catalysts: influence on catalytic rates and electron transfer. Reback ML; Ginovska-Pangovska B; Ho MH; Jain A; Squier TC; Raugei S; Roberts JA; Shaw WJ Chemistry; 2013 Feb; 19(6):1928-41. PubMed ID: 23233438 [TBL] [Abstract][Full Text] [Related]
4. Enzyme design from the bottom up: an active nickel electrocatalyst with a structured peptide outer coordination sphere. Reback ML; Buchko GW; Kier BL; Ginovska-Pangovska B; Xiong Y; Lense S; Hou J; Roberts JA; Sorensen CM; Raugei S; Squier TC; Shaw WJ Chemistry; 2014 Feb; 20(6):1510-4. PubMed ID: 24443316 [TBL] [Abstract][Full Text] [Related]
5. Development of molecular electrocatalysts for CO2 reduction and H2 production/oxidation. Rakowski DuBois M; DuBois DL Acc Chem Res; 2009 Dec; 42(12):1974-82. PubMed ID: 19645445 [TBL] [Abstract][Full Text] [Related]
6. Amino acid modified Ni catalyst exhibits reversible H2 oxidation/production over a broad pH range at elevated temperatures. Dutta A; DuBois DL; Roberts JA; Shaw WJ Proc Natl Acad Sci U S A; 2014 Nov; 111(46):16286-91. PubMed ID: 25368196 [TBL] [Abstract][Full Text] [Related]
7. Arginine-containing ligands enhance H₂ oxidation catalyst performance. Dutta A; Roberts JA; Shaw WJ Angew Chem Int Ed Engl; 2014 Jun; 53(25):6487-91. PubMed ID: 24820824 [TBL] [Abstract][Full Text] [Related]
8. From enzyme maturation to synthetic chemistry: the case of hydrogenases. Artero V; Berggren G; Atta M; Caserta G; Roy S; Pecqueur L; Fontecave M Acc Chem Res; 2015 Aug; 48(8):2380-7. PubMed ID: 26165393 [TBL] [Abstract][Full Text] [Related]
9. Water-assisted proton delivery and removal in bio-inspired hydrogen production catalysts. Ho MH; O'Hagan M; Dupuis M; DuBois DL; Bullock RM; Shaw WJ; Raugei S Dalton Trans; 2015 Jun; 44(24):10969-79. PubMed ID: 25999141 [TBL] [Abstract][Full Text] [Related]
10. Minimal proton channel enables H2 oxidation and production with a water-soluble nickel-based catalyst. Dutta A; Lense S; Hou J; Engelhard MH; Roberts JA; Shaw WJ J Am Chem Soc; 2013 Dec; 135(49):18490-6. PubMed ID: 24206187 [TBL] [Abstract][Full Text] [Related]
11. Incorporating peptides in the outer-coordination sphere of bioinspired electrocatalysts for hydrogen production. Jain A; Lense S; Linehan JC; Raugei S; Cho H; DuBois DL; Shaw WJ Inorg Chem; 2011 May; 50(9):4073-85. PubMed ID: 21456543 [TBL] [Abstract][Full Text] [Related]
12. From hydrogenases to noble metal-free catalytic nanomaterials for H2 production and uptake. Le Goff A; Artero V; Jousselme B; Tran PD; Guillet N; Métayé R; Fihri A; Palacin S; Fontecave M Science; 2009 Dec; 326(5958):1384-7. PubMed ID: 19965754 [TBL] [Abstract][Full Text] [Related]
13. Nickel-centred proton reduction catalysis in a model of [NiFe] hydrogenase. Brazzolotto D; Gennari M; Queyriaux N; Simmons TR; Pécaut J; Demeshko S; Meyer F; Orio M; Artero V; Duboc C Nat Chem; 2016 Nov; 8(11):1054-1060. PubMed ID: 27768098 [TBL] [Abstract][Full Text] [Related]
14. Two pathways for electrocatalytic oxidation of hydrogen by a nickel bis(diphosphine) complex with pendant amines in the second coordination sphere. Yang JY; Smith SE; Liu T; Dougherty WG; Hoffert WA; Kassel WS; Rakowski DuBois M; DuBois DL; Bullock RM J Am Chem Soc; 2013 Jul; 135(26):9700-12. PubMed ID: 23631473 [TBL] [Abstract][Full Text] [Related]
15. Catalytic hydrogen production by a Ni-Ru mimic of NiFe hydrogenases involves a proton-coupled electron transfer step. Canaguier S; Fourmond V; Perotto CU; Fize J; Pécaut J; Fontecave M; Field MJ; Artero V Chem Commun (Camb); 2013 Jun; 49(44):5004-6. PubMed ID: 23612503 [TBL] [Abstract][Full Text] [Related]
16. Molecular electrocatalysts for oxidation of hydrogen using earth-abundant metals: shoving protons around with proton relays. Bullock RM; Helm ML Acc Chem Res; 2015 Jul; 48(7):2017-26. PubMed ID: 26079983 [TBL] [Abstract][Full Text] [Related]
17. The Molecular Proceedings of Biological Hydrogen Turnover. Haumann M; Stripp ST Acc Chem Res; 2018 Aug; 51(8):1755-1763. PubMed ID: 30001117 [TBL] [Abstract][Full Text] [Related]
18. Synthesis, structure and reactivity of Ni site models of [NiFeSe] hydrogenases. Wombwell C; Reisner E Dalton Trans; 2014 Mar; 43(11):4483-93. PubMed ID: 24366040 [TBL] [Abstract][Full Text] [Related]
19. Guiding Principles of Hydrogenase Catalysis Instigated and Clarified by Protein Film Electrochemistry. Armstrong FA; Evans RM; Hexter SV; Murphy BJ; Roessler MM; Wulff P Acc Chem Res; 2016 May; 49(5):884-92. PubMed ID: 27104487 [TBL] [Abstract][Full Text] [Related]
20. Biomimetic and microbial approaches to solar fuel generation. Magnuson A; Anderlund M; Johansson O; Lindblad P; Lomoth R; Polivka T; Ott S; Stensjö K; Styring S; Sundström V; Hammarström L Acc Chem Res; 2009 Dec; 42(12):1899-909. PubMed ID: 19757805 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]