BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1139 related articles for article (PubMed ID: 24945095)

  • 1. Beyond the active site: the impact of the outer coordination sphere on electrocatalysts for hydrogen production and oxidation.
    Ginovska-Pangovska B; Dutta A; Reback ML; Linehan JC; Shaw WJ
    Acc Chem Res; 2014 Aug; 47(8):2621-30. PubMed ID: 24945095
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A modular, energy-based approach to the development of nickel containing molecular electrocatalysts for hydrogen production and oxidation.
    Shaw WJ; Helm ML; DuBois DL
    Biochim Biophys Acta; 2013; 1827(8-9):1123-39. PubMed ID: 23313415
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The role of a dipeptide outer-coordination sphere on H2-production catalysts: influence on catalytic rates and electron transfer.
    Reback ML; Ginovska-Pangovska B; Ho MH; Jain A; Squier TC; Raugei S; Roberts JA; Shaw WJ
    Chemistry; 2013 Feb; 19(6):1928-41. PubMed ID: 23233438
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enzyme design from the bottom up: an active nickel electrocatalyst with a structured peptide outer coordination sphere.
    Reback ML; Buchko GW; Kier BL; Ginovska-Pangovska B; Xiong Y; Lense S; Hou J; Roberts JA; Sorensen CM; Raugei S; Squier TC; Shaw WJ
    Chemistry; 2014 Feb; 20(6):1510-4. PubMed ID: 24443316
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development of molecular electrocatalysts for CO2 reduction and H2 production/oxidation.
    Rakowski DuBois M; DuBois DL
    Acc Chem Res; 2009 Dec; 42(12):1974-82. PubMed ID: 19645445
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Amino acid modified Ni catalyst exhibits reversible H2 oxidation/production over a broad pH range at elevated temperatures.
    Dutta A; DuBois DL; Roberts JA; Shaw WJ
    Proc Natl Acad Sci U S A; 2014 Nov; 111(46):16286-91. PubMed ID: 25368196
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Arginine-containing ligands enhance H₂ oxidation catalyst performance.
    Dutta A; Roberts JA; Shaw WJ
    Angew Chem Int Ed Engl; 2014 Jun; 53(25):6487-91. PubMed ID: 24820824
    [TBL] [Abstract][Full Text] [Related]  

  • 8. From enzyme maturation to synthetic chemistry: the case of hydrogenases.
    Artero V; Berggren G; Atta M; Caserta G; Roy S; Pecqueur L; Fontecave M
    Acc Chem Res; 2015 Aug; 48(8):2380-7. PubMed ID: 26165393
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Water-assisted proton delivery and removal in bio-inspired hydrogen production catalysts.
    Ho MH; O'Hagan M; Dupuis M; DuBois DL; Bullock RM; Shaw WJ; Raugei S
    Dalton Trans; 2015 Jun; 44(24):10969-79. PubMed ID: 25999141
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Minimal proton channel enables H2 oxidation and production with a water-soluble nickel-based catalyst.
    Dutta A; Lense S; Hou J; Engelhard MH; Roberts JA; Shaw WJ
    J Am Chem Soc; 2013 Dec; 135(49):18490-6. PubMed ID: 24206187
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Incorporating peptides in the outer-coordination sphere of bioinspired electrocatalysts for hydrogen production.
    Jain A; Lense S; Linehan JC; Raugei S; Cho H; DuBois DL; Shaw WJ
    Inorg Chem; 2011 May; 50(9):4073-85. PubMed ID: 21456543
    [TBL] [Abstract][Full Text] [Related]  

  • 12. From hydrogenases to noble metal-free catalytic nanomaterials for H2 production and uptake.
    Le Goff A; Artero V; Jousselme B; Tran PD; Guillet N; Métayé R; Fihri A; Palacin S; Fontecave M
    Science; 2009 Dec; 326(5958):1384-7. PubMed ID: 19965754
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nickel-centred proton reduction catalysis in a model of [NiFe] hydrogenase.
    Brazzolotto D; Gennari M; Queyriaux N; Simmons TR; Pécaut J; Demeshko S; Meyer F; Orio M; Artero V; Duboc C
    Nat Chem; 2016 Nov; 8(11):1054-1060. PubMed ID: 27768098
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Two pathways for electrocatalytic oxidation of hydrogen by a nickel bis(diphosphine) complex with pendant amines in the second coordination sphere.
    Yang JY; Smith SE; Liu T; Dougherty WG; Hoffert WA; Kassel WS; Rakowski DuBois M; DuBois DL; Bullock RM
    J Am Chem Soc; 2013 Jul; 135(26):9700-12. PubMed ID: 23631473
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Catalytic hydrogen production by a Ni-Ru mimic of NiFe hydrogenases involves a proton-coupled electron transfer step.
    Canaguier S; Fourmond V; Perotto CU; Fize J; Pécaut J; Fontecave M; Field MJ; Artero V
    Chem Commun (Camb); 2013 Jun; 49(44):5004-6. PubMed ID: 23612503
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular electrocatalysts for oxidation of hydrogen using earth-abundant metals: shoving protons around with proton relays.
    Bullock RM; Helm ML
    Acc Chem Res; 2015 Jul; 48(7):2017-26. PubMed ID: 26079983
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Molecular Proceedings of Biological Hydrogen Turnover.
    Haumann M; Stripp ST
    Acc Chem Res; 2018 Aug; 51(8):1755-1763. PubMed ID: 30001117
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthesis, structure and reactivity of Ni site models of [NiFeSe] hydrogenases.
    Wombwell C; Reisner E
    Dalton Trans; 2014 Mar; 43(11):4483-93. PubMed ID: 24366040
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Guiding Principles of Hydrogenase Catalysis Instigated and Clarified by Protein Film Electrochemistry.
    Armstrong FA; Evans RM; Hexter SV; Murphy BJ; Roessler MM; Wulff P
    Acc Chem Res; 2016 May; 49(5):884-92. PubMed ID: 27104487
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biomimetic and microbial approaches to solar fuel generation.
    Magnuson A; Anderlund M; Johansson O; Lindblad P; Lomoth R; Polivka T; Ott S; Stensjö K; Styring S; Sundström V; Hammarström L
    Acc Chem Res; 2009 Dec; 42(12):1899-909. PubMed ID: 19757805
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 57.