These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Spindle oscillation in cats: the role of corticothalamic feedback in a thalamically generated rhythm. Contreras D; Steriade M J Physiol; 1996 Jan; 490 ( Pt 1)(Pt 1):159-79. PubMed ID: 8745285 [TBL] [Abstract][Full Text] [Related]
5. The activity of thalamus and cerebral cortex neurons in rabbits during "slow wave-spindle" EEG complexes. Burikov AA; Bereshpolova YuI Neurosci Behav Physiol; 1999; 29(2):143-9. PubMed ID: 10432501 [TBL] [Abstract][Full Text] [Related]
6. Slow spindles are associated with cortical high frequency activity. Hashemi NS; Dehnavi F; Moghimi S; Ghorbani M Neuroimage; 2019 Apr; 189():71-84. PubMed ID: 30639838 [TBL] [Abstract][Full Text] [Related]
7. Low-frequency rhythms in the thalamus of intact-cortex and decorticated cats. Timofeev I; Steriade M J Neurophysiol; 1996 Dec; 76(6):4152-68. PubMed ID: 8985908 [TBL] [Abstract][Full Text] [Related]
8. Intrathalamic connections shape spindle activity - a modelling study. Bús B; Antal K; Emri Z Acta Biol Hung; 2018 Mar; 69(1):16-28. PubMed ID: 29575912 [TBL] [Abstract][Full Text] [Related]
9. Network modulation of a slow intrinsic oscillation of cat thalamocortical neurons implicated in sleep delta waves: cortically induced synchronization and brainstem cholinergic suppression. Steriade M; Dossi RC; Nuñez A J Neurosci; 1991 Oct; 11(10):3200-17. PubMed ID: 1941080 [TBL] [Abstract][Full Text] [Related]
10. Spatiotemporal patterns of sleep spindle activity in human anterior thalamus and cortex. Bernhard H; Schaper FLWVJ; Janssen MLF; Gommer ED; Jansma BM; Van Kranen-Mastenbroek V; Rouhl RPW; de Weerd P; Reithler J; Roberts MJ; Neuroimage; 2022 Nov; 263():119625. PubMed ID: 36103955 [TBL] [Abstract][Full Text] [Related]
11. Characterization of topographically specific sleep spindles in mice. Kim D; Hwang E; Lee M; Sung H; Choi JH Sleep; 2015 Jan; 38(1):85-96. PubMed ID: 25325451 [TBL] [Abstract][Full Text] [Related]
13. Differential thalamocortical interactions in slow and fast spindle generation: A computational model. Mushtaq M; Marshall L; Bazhenov M; Mölle M; Martinetz T PLoS One; 2022; 17(12):e0277772. PubMed ID: 36508417 [TBL] [Abstract][Full Text] [Related]
14. Interactions between core and matrix thalamocortical projections in human sleep spindle synchronization. Bonjean M; Baker T; Bazhenov M; Cash S; Halgren E; Sejnowski T J Neurosci; 2012 Apr; 32(15):5250-63. PubMed ID: 22496571 [TBL] [Abstract][Full Text] [Related]
15. The Ca(V)3.3 calcium channel is the major sleep spindle pacemaker in thalamus. Astori S; Wimmer RD; Prosser HM; Corti C; Corsi M; Liaudet N; Volterra A; Franken P; Adelman JP; Lüthi A Proc Natl Acad Sci U S A; 2011 Aug; 108(33):13823-8. PubMed ID: 21808016 [TBL] [Abstract][Full Text] [Related]
16. Prediction and verification of nonlinear sleep spindle harmonic oscillations. Abeysuriya RG; Rennie CJ; Robinson PA J Theor Biol; 2014 Mar; 344():70-7. PubMed ID: 24291492 [TBL] [Abstract][Full Text] [Related]
17. Corticothalamic feedback controls sleep spindle duration in vivo. Bonjean M; Baker T; Lemieux M; Timofeev I; Sejnowski T; Bazhenov M J Neurosci; 2011 Jun; 31(25):9124-34. PubMed ID: 21697364 [TBL] [Abstract][Full Text] [Related]
18. Stimulus-induced transitions between spike-wave discharges and spindles with the modulation of thalamic reticular nucleus. Fan D; Wang Q; Su J; Xi H J Comput Neurosci; 2017 Dec; 43(3):203-225. PubMed ID: 28939929 [TBL] [Abstract][Full Text] [Related]
19. Thalamic dysfunction in schizophrenia suggested by whole-night deficits in slow and fast spindles. Ferrarelli F; Peterson MJ; Sarasso S; Riedner BA; Murphy MJ; Benca RM; Bria P; Kalin NH; Tononi G Am J Psychiatry; 2010 Nov; 167(11):1339-48. PubMed ID: 20843876 [TBL] [Abstract][Full Text] [Related]