These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 24945793)

  • 1. Study on simultaneous recycling of EAF dust and plastic waste containing TBBPA.
    Grabda M; Oleszek S; Shibata E; Nakamura T
    J Hazard Mater; 2014 Aug; 278():25-33. PubMed ID: 24945793
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fate of lead oxide during thermal treatment with tetrabromobisphenol A.
    Oleszek S; Grabda M; Shibata E; Nakamura T
    J Hazard Mater; 2013 Oct; 261():163-71. PubMed ID: 23921179
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Distribution of copper, silver and gold during thermal treatment with brominated flame retardants.
    Oleszek S; Grabda M; Shibata E; Nakamura T
    Waste Manag; 2013 Sep; 33(9):1835-42. PubMed ID: 23746984
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of temperature and heating time on bromination of zinc oxide during thermal treatment with tetrabromobisphenol A.
    Grabda M; Oleszek-Kudlak S; Shibata E; Nakamura T
    Environ Sci Technol; 2009 Dec; 43(23):8936-41. PubMed ID: 19943669
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Vaporization of zinc during thermal treatment of ZnO with tetrabromobisphenol A (TBBPA).
    Grabda M; Oleszek-Kudlak S; Shibata E; Nakamura T
    J Hazard Mater; 2011 Mar; 187(1-3):473-9. PubMed ID: 21296494
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Studies on bromination and evaporation of zinc oxide during thermal treatment with TBBPA.
    Grabda M; Oleszek-Kudlak S; Rzyman M; Shibata E; Nakamura T
    Environ Sci Technol; 2009 Feb; 43(4):1205-10. PubMed ID: 19320181
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Debromination of novel brominated flame retardants using Zn-based additives: A viable thermochemical approach in the mitigation of toxic effects during e-waste recycling.
    Kuttiyathil MS; Ali L; Hajamohideen AR; Altarawneh M
    Environ Pollut; 2024 Apr; 346():123645. PubMed ID: 38402939
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Zn dust mediated reductive debromination of tetrabromobisphenol A (TBBPA).
    Liu GB; Zhao HY; Thiemann T
    J Hazard Mater; 2009 Sep; 169(1-3):1150-3. PubMed ID: 19450923
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thermodynamic analysis of the selective carbothermic reduction of electric arc furnace dust.
    Pickles CA
    J Hazard Mater; 2008 Jan; 150(2):265-78. PubMed ID: 17540503
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reduction behavior of zinc ferrite in EAF-dust recycling with CO gas as a reducing agent.
    Wu CC; Chang FC; Chen WS; Tsai MS; Wang YN
    J Environ Manage; 2014 Oct; 143():208-13. PubMed ID: 24921184
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hydrometallurgical processing of carbon steel EAF dust.
    Havlík T; Vidor e Souza B; Bernardes AM; Schneider IA; Miskufová A
    J Hazard Mater; 2006 Jul; 135(1-3):311-8. PubMed ID: 16442223
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Formation of the ZnFe2O4 phase in an electric arc furnace off-gas treatment system.
    Suetens T; Guo M; Van Acker K; Blanpain B
    J Hazard Mater; 2015 Apr; 287():180-7. PubMed ID: 25646901
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterisation of the sintering behaviour of Waelz slag from electric arc furnace (EAF) dust recycling for use in the clay ceramics industry.
    Quijorna N; de Pedro M; Romero M; Andrés A
    J Environ Manage; 2014 Jan; 132():278-86. PubMed ID: 24321287
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Recycling of electric arc furnace dust through dissolution in deep eutectic ionic liquids and electrowinning.
    Bakkar A
    J Hazard Mater; 2014 Sep; 280():191-9. PubMed ID: 25156719
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hydrometallurgical recovery of zinc and lead from electric arc furnace dust using mononitrilotriacetate anion and hexahydrated ferric chloride.
    Leclerc N; Meux E; Lecuire JM
    J Hazard Mater; 2002 Apr; 91(1-3):257-70. PubMed ID: 11900917
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of steel mill electric-arc furnace dust.
    Sofilić T; Rastovcan-Mioc A; Cerjan-Stefanović S; Novosel-Radović V; Jenko M
    J Hazard Mater; 2004 Jun; 109(1-3):59-70. PubMed ID: 15177746
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hydrometallurgical process for zinc recovery from electric arc furnace dust (EAFD): part I: Characterization and leaching by diluted sulphuric acid.
    Oustadakis P; Tsakiridis PE; Katsiapi A; Agatzini-Leonardou S
    J Hazard Mater; 2010 Jul; 179(1-3):1-7. PubMed ID: 20129730
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Formation of brominated pollutants during the pyrolysis and combustion of tetrabromobisphenol A at different temperatures.
    Ortuño N; Moltó J; Conesa JA; Font R
    Environ Pollut; 2014 Aug; 191():31-7. PubMed ID: 24792882
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Kinetics of tetrabromobisphenol A (TBBPA) reactions with H₂SO₄, HNO₃ and HCl: implication for hydrometallurgy of electronic wastes.
    Zhong Y; Li D; Mao Z; Huang W; Peng P; Chen P; Mei J
    J Hazard Mater; 2014 Apr; 270():196-201. PubMed ID: 24594840
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Recycling of an electric arc furnace flue dust to obtain high grade ZnO.
    Ruiz O; Clemente C; Alonso M; Alguacil FJ
    J Hazard Mater; 2007 Mar; 141(1):33-6. PubMed ID: 16876937
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.