These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

449 related articles for article (PubMed ID: 24945828)

  • 1. Catecholamine autotoxicity. Implications for pharmacology and therapeutics of Parkinson disease and related disorders.
    Goldstein DS; Kopin IJ; Sharabi Y
    Pharmacol Ther; 2014 Dec; 144(3):268-82. PubMed ID: 24945828
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The heart of PD: Lewy body diseases as neurocardiologic disorders.
    Goldstein DS; Sharabi Y
    Brain Res; 2019 Jan; 1702():74-84. PubMed ID: 29030055
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Catecholaldehyde Hypothesis for the Pathogenesis of Catecholaminergic Neurodegeneration: What We Know and What We Do Not Know.
    Goldstein DS
    Int J Mol Sci; 2021 Jun; 22(11):. PubMed ID: 34206133
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The "Sick-but-not-Dead" Phenomenon Applied to Catecholamine Deficiency in Neurodegenerative Diseases.
    Goldstein DS
    Semin Neurol; 2020 Oct; 40(5):502-514. PubMed ID: 32906170
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The catecholaldehyde hypothesis: where MAO fits in.
    Goldstein DS
    J Neural Transm (Vienna); 2020 Feb; 127(2):169-177. PubMed ID: 31807952
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Vesicular uptake blockade generates the toxic dopamine metabolite 3,4-dihydroxyphenylacetaldehyde in PC12 cells: relevance to the pathogenesis of Parkinson's disease.
    Goldstein DS; Sullivan P; Cooney A; Jinsmaa Y; Sullivan R; Gross DJ; Holmes C; Kopin IJ; Sharabi Y
    J Neurochem; 2012 Dec; 123(6):932-43. PubMed ID: 22906103
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Deficient vesicular storage: A common theme in catecholaminergic neurodegeneration.
    Goldstein DS; Holmes C; Sullivan P; Mash DC; Sidransky E; Stefani A; Kopin IJ; Sharabi Y
    Parkinsonism Relat Disord; 2015 Sep; 21(9):1013-22. PubMed ID: 26255205
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Oligomerization and Membrane-binding Properties of Covalent Adducts Formed by the Interaction of α-Synuclein with the Toxic Dopamine Metabolite 3,4-Dihydroxyphenylacetaldehyde (DOPAL).
    Follmer C; Coelho-Cerqueira E; Yatabe-Franco DY; Araujo GD; Pinheiro AS; Domont GB; Eliezer D
    J Biol Chem; 2015 Nov; 290(46):27660-79. PubMed ID: 26381411
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Decreased vesicular storage and aldehyde dehydrogenase activity in multiple system atrophy.
    Goldstein DS; Sullivan P; Holmes C; Kopin IJ; Sharabi Y; Mash DC
    Parkinsonism Relat Disord; 2015 Jun; 21(6):567-72. PubMed ID: 25829070
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 3,4-Dihydroxyphenylacetaldehyde Is More Efficient than Dopamine in Oligomerizing and Quinonizing
    Jinsmaa Y; Isonaka R; Sharabi Y; Goldstein DS
    J Pharmacol Exp Ther; 2020 Feb; 372(2):157-165. PubMed ID: 31744850
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Divalent metal ions enhance DOPAL-induced oligomerization of alpha-synuclein.
    Jinsmaa Y; Sullivan P; Gross D; Cooney A; Sharabi Y; Goldstein DS
    Neurosci Lett; 2014 May; 569():27-32. PubMed ID: 24670480
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Isoindole Linkages Provide a Pathway for DOPAL-Mediated Cross-Linking of α-Synuclein.
    Werner-Allen JW; Monti S; DuMond JF; Levine RL; Bax A
    Biochemistry; 2018 Mar; 57(9):1462-1474. PubMed ID: 29394048
    [TBL] [Abstract][Full Text] [Related]  

  • 13. "Sick-but-not-dead": multiple paths to catecholamine deficiency in Lewy body diseases.
    Goldstein DS
    Stress; 2020 Nov; 23(6):633-637. PubMed ID: 32372682
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Catechols in post-mortem brain of patients with Parkinson disease.
    Goldstein DS; Sullivan P; Holmes C; Kopin IJ; Basile MJ; Mash DC
    Eur J Neurol; 2011 May; 18(5):703-10. PubMed ID: 21073636
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The rat rotenone model reproduces the abnormal pattern of central catecholamine metabolism found in Parkinson's disease.
    Landau R; Halperin R; Sullivan P; Zibly Z; Leibowitz A; Goldstein DS; Sharabi Y
    Dis Model Mech; 2022 Jan; 15(1):. PubMed ID: 34842277
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rotenone decreases intracellular aldehyde dehydrogenase activity: implications for the pathogenesis of Parkinson's disease.
    Goldstein DS; Sullivan P; Cooney A; Jinsmaa Y; Kopin IJ; Sharabi Y
    J Neurochem; 2015 Apr; 133(1):14-25. PubMed ID: 25645689
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biomarkers, mechanisms, and potential prevention of catecholamine neuron loss in Parkinson disease.
    Goldstein DS
    Adv Pharmacol; 2013; 68():235-72. PubMed ID: 24054148
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Toxic Dopamine Metabolite DOPAL Forms an Unexpected Dicatechol Pyrrole Adduct with Lysines of α-Synuclein.
    Werner-Allen JW; DuMond JF; Levine RL; Bax A
    Angew Chem Int Ed Engl; 2016 Jun; 55(26):7374-8. PubMed ID: 27158766
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Aldehyde adducts inhibit 3,4-dihydroxyphenylacetaldehyde-induced α-synuclein aggregation and toxicity: Implication for Parkinson neuroprotective therapy.
    Kumar VB; Hsu FF; Lakshmi VM; Gillespie KN; Burke WJ
    Eur J Pharmacol; 2019 Feb; 845():65-73. PubMed ID: 30579934
    [TBL] [Abstract][Full Text] [Related]  

  • 20. DOPAL is transmissible to and oligomerizes alpha-synuclein in human glial cells.
    Jinsmaa Y; Sullivan P; Sharabi Y; Goldstein DS
    Auton Neurosci; 2016 Jan; 194():46-51. PubMed ID: 26777075
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.