These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

242 related articles for article (PubMed ID: 24945832)

  • 1. Novel high-efficiency crystalline-silicon-based compound heterojunction solar cells: HCT (heterojunction with compound thin-layer).
    Liu Y; Sun Y; Liu W; Yao J
    Phys Chem Chem Phys; 2014 Aug; 16(29):15400-10. PubMed ID: 24945832
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improved amorphous/crystalline silicon interface passivation for heterojunction solar cells by low-temperature chemical vapor deposition and post-annealing treatment.
    Wang F; Zhang X; Wang L; Jiang Y; Wei C; Xu S; Zhao Y
    Phys Chem Chem Phys; 2014 Oct; 16(37):20202-8. PubMed ID: 25138166
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optoelectronic transport properties in amorphous/crystalline silicon solar cell heterojunctions measured by frequency-domain photocarrier radiometry: multi-parameter measurement reliability and precision studies.
    Zhang Y; Melnikov A; Mandelis A; Halliop B; Kherani NP; Zhu R
    Rev Sci Instrum; 2015 Mar; 86(3):033901. PubMed ID: 25832239
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Efficiency Improvement of HIT Solar Cells on p-Type Si Wafers.
    Wei CY; Lin CH; Hsiao HT; Yang PC; Wang CM; Pan YC
    Materials (Basel); 2013 Nov; 6(11):5440-5446. PubMed ID: 28788400
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of n-doped μc-Si:H back surface field layer with micro growth in crystalline-amorphous silicon heterojunction solar cells.
    Kim S; Dao VA; Shin C; Balaji N; Yi J
    J Nanosci Nanotechnol; 2014 Dec; 14(12):9258-62. PubMed ID: 25971047
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Light trapping in ultrathin 25  μm exfoliated Si solar cells.
    Hilali MM; Saha S; Onyegam E; Rao R; Mathew L; Banerjee SK
    Appl Opt; 2014 Sep; 53(27):6140-7. PubMed ID: 25322089
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Improvement of the SiOx passivation layer for high-efficiency Si/PEDOT:PSS heterojunction solar cells.
    Sheng J; Fan K; Wang D; Han C; Fang J; Gao P; Ye J
    ACS Appl Mater Interfaces; 2014 Sep; 6(18):16027-34. PubMed ID: 25157634
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Silicon Nanowire Heterojunction Solar Cells with an Al
    Kato S; Kurokawa Y; Gotoh K; Soga T
    Nanoscale Res Lett; 2019 Mar; 14(1):99. PubMed ID: 30877482
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of Deposition Pressure on the Properties of Round Pyramid Textured a-Si:H Solar Cells for Maglev.
    Lee J; Choi W; Lee K; Lee D; Kang H
    J Nanosci Nanotechnol; 2016 May; 16(5):5100-3. PubMed ID: 27483880
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phosphorus Catalytic Doping on Intrinsic Silicon Thin Films for the Application in Silicon Heterojunction Solar Cells.
    Liu Y; Pomaska M; Duan W; Qiu D; Li S; Lambertz A; Gad A; Breuer U; Finger F; Rau U; Ding K
    ACS Appl Mater Interfaces; 2020 Dec; 12(50):56615-56621. PubMed ID: 33263985
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Correlation between in Situ Diagnostics of the Hydrogen Plasma and the Interface Passivation Quality of Hydrogen Plasma Post-Treated a-Si:H in Silicon Heterojunction Solar Cells.
    Soman A; Nsofor U; Das U; Gu T; Hegedus S
    ACS Appl Mater Interfaces; 2019 May; 11(17):16181-16190. PubMed ID: 30951278
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Realization of 13.6% Efficiency on 20 μm Thick Si/Organic Hybrid Heterojunction Solar Cells via Advanced Nanotexturing and Surface Recombination Suppression.
    He J; Gao P; Liao M; Yang X; Ying Z; Zhou S; Ye J; Cui Y
    ACS Nano; 2015 Jun; 9(6):6522-31. PubMed ID: 26047260
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development of high conducting phosphorous doped nanocrystalline thin silicon films for silicon heterojunction solar cells application.
    Bhattacharya S; Pandey A; Alam S; Komarala VK
    Nanotechnology; 2024 May; 35(32):. PubMed ID: 38710179
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Strong and reversible modulation of carbon nanotube-silicon heterojunction solar cells by an interfacial oxide layer.
    Jia Y; Cao A; Kang F; Li P; Gui X; Zhang L; Shi E; Wei J; Wang K; Zhu H; Wu D
    Phys Chem Chem Phys; 2012 Jun; 14(23):8391-6. PubMed ID: 22573091
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Strategies for increasing the efficiency of heterojunction organic solar cells: material selection and device architecture.
    Heremans P; Cheyns D; Rand BP
    Acc Chem Res; 2009 Nov; 42(11):1740-7. PubMed ID: 19751055
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An 8.68% efficiency chemically-doped-free graphene-silicon solar cell using silver nanowires network buried contacts.
    Yang L; Yu X; Hu W; Wu X; Zhao Y; Yang D
    ACS Appl Mater Interfaces; 2015 Feb; 7(7):4135-41. PubMed ID: 25642749
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Investigation on the surface passivation of intrinsic a-Si:H thin films prepared by inductively coupled plasma-chemical vapor deposition for heterojunction solar cell applications.
    Jeong C; Jeon M; Kim TW; Boo S; Kamisako K
    J Nanosci Nanotechnol; 2008 Sep; 8(9):4662-5. PubMed ID: 19049080
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Surface plasmon enhanced ultrathin Cu
    Jamil S; Saha U; Alam MK
    Nanoscale Adv; 2023 May; 5(11):2887-2896. PubMed ID: 37260479
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A hybrid solar cell fabricated using amorphous silicon and a fullerene derivative.
    Yun MH; Jang JH; Kim KM; Song HE; Lee JC; Kim JY
    Phys Chem Chem Phys; 2013 Dec; 15(45):19913-8. PubMed ID: 24149894
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High efficiency thin-film crystalline Si/Ge tandem solar cell.
    Sun G; Chang F; Soref RA
    Opt Express; 2010 Feb; 18(4):3746-53. PubMed ID: 20389384
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.