These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
479 related articles for article (PubMed ID: 24946182)
1. Mitochondrial bioenergetics deregulation caused by long-chain 3-hydroxy fatty acids accumulating in LCHAD and MTP deficiencies in rat brain: a possible role of mPTP opening as a pathomechanism in these disorders? Tonin AM; Amaral AU; Busanello EN; Gasparotto J; Gelain DP; Gregersen N; Wajner M Biochim Biophys Acta; 2014 Sep; 1842(9):1658-67. PubMed ID: 24946182 [TBL] [Abstract][Full Text] [Related]
2. Uncoupling, metabolic inhibition and induction of mitochondrial permeability transition in rat liver mitochondria caused by the major long-chain hydroxyl monocarboxylic fatty acids accumulating in LCHAD deficiency. Hickmann FH; Cecatto C; Kleemann D; Monteiro WO; Castilho RF; Amaral AU; Wajner M Biochim Biophys Acta; 2015; 1847(6-7):620-8. PubMed ID: 25868874 [TBL] [Abstract][Full Text] [Related]
3. Deregulation of mitochondrial functions provoked by long-chain fatty acid accumulating in long-chain 3-hydroxyacyl-CoA dehydrogenase and mitochondrial permeability transition deficiencies in rat heart--mitochondrial permeability transition pore opening as a potential contributing pathomechanism of cardiac alterations in these disorders. Cecatto C; Hickmann FH; Rodrigues MD; Amaral AU; Wajner M FEBS J; 2015 Dec; 282(24):4714-26. PubMed ID: 26408230 [TBL] [Abstract][Full Text] [Related]
4. Disturbance of mitochondrial functions provoked by the major long-chain 3-hydroxylated fatty acids accumulating in MTP and LCHAD deficiencies in skeletal muscle. Cecatto C; Godoy KDS; da Silva JC; Amaral AU; Wajner M Toxicol In Vitro; 2016 Oct; 36():1-9. PubMed ID: 27371118 [TBL] [Abstract][Full Text] [Related]
5. Long-chain 3-hydroxy fatty acids accumulating in long-chain 3-hydroxyacyl-CoA dehydrogenase and mitochondrial trifunctional protein deficiencies uncouple oxidative phosphorylation in heart mitochondria. Tonin AM; Amaral AU; Busanello EN; Grings M; Castilho RF; Wajner M J Bioenerg Biomembr; 2013 Feb; 45(1-2):47-57. PubMed ID: 23065309 [TBL] [Abstract][Full Text] [Related]
6. Disturbance of mitochondrial energy homeostasis caused by the metabolites accumulating in LCHAD and MTP deficiencies in rat brain. Tonin AM; Ferreira GC; Grings M; Viegas CM; Busanello EN; Amaral AU; Zanatta A; Schuck PF; Wajner M Life Sci; 2010 May; 86(21-22):825-31. PubMed ID: 20399795 [TBL] [Abstract][Full Text] [Related]
7. Metabolite accumulation in VLCAD deficiency markedly disrupts mitochondrial bioenergetics and Ca Cecatto C; Amaral AU; da Silva JC; Wajner A; Schimit MOV; da Silva LHR; Wajner SM; Zanatta Â; Castilho RF; Wajner M FEBS J; 2018 Apr; 285(8):1437-1455. PubMed ID: 29476646 [TBL] [Abstract][Full Text] [Related]
9. Long-chain 3-hydroxy fatty acids accumulating in LCHAD and MTP deficiencies induce oxidative stress in rat brain. Tonin AM; Grings M; Busanello EN; Moura AP; Ferreira GC; Viegas CM; Fernandes CG; Schuck PF; Wajner M Neurochem Int; 2010 Jul; 56(8):930-6. PubMed ID: 20381565 [TBL] [Abstract][Full Text] [Related]
10. Impairment of mitochondrial bioenergetics and permeability transition induction caused by major long-chain fatty acids accumulating in VLCAD deficiency in skeletal muscle as potential pathomechanisms of myopathy. Cecatto C; Amaral AU; Roginski AC; Castilho RF; Wajner M Toxicol In Vitro; 2020 Feb; 62():104665. PubMed ID: 31629068 [TBL] [Abstract][Full Text] [Related]
11. Sulfite disrupts brain mitochondrial energy homeostasis and induces mitochondrial permeability transition pore opening via thiol group modification. Grings M; Moura AP; Amaral AU; Parmeggiani B; Gasparotto J; Moreira JC; Gelain DP; Wyse AT; Wajner M; Leipnitz G Biochim Biophys Acta; 2014 Sep; 1842(9):1413-22. PubMed ID: 24793416 [TBL] [Abstract][Full Text] [Related]
12. cis-4-Decenoic and decanoic acids impair mitochondrial energy, redox and Ca(2+) homeostasis and induce mitochondrial permeability transition pore opening in rat brain and liver: Possible implications for the pathogenesis of MCAD deficiency. Amaral AU; Cecatto C; da Silva JC; Wajner A; Godoy KDS; Ribeiro RT; Wajner M Biochim Biophys Acta; 2016 Sep; 1857(9):1363-1372. PubMed ID: 27240720 [TBL] [Abstract][Full Text] [Related]
13. Pharmacological inhibition of carnitine palmitoyltransferase 1 restores mitochondrial oxidative phosphorylation in human trifunctional protein deficient fibroblasts. Lefort B; Gouache E; Acquaviva C; Tardieu M; Benoist JF; Dumas JF; Servais S; Chevalier S; Vianey-Saban C; Labarthe F Biochim Biophys Acta Mol Basis Dis; 2017 Jun; 1863(6):1292-1299. PubMed ID: 28392417 [TBL] [Abstract][Full Text] [Related]
14. Mitochondrial fatty acid beta-oxidation in the human eye and brain: implications for the retinopathy of long-chain 3-hydroxyacyl-CoA dehydrogenase deficiency. Tyni T; Paetau A; Strauss AW; Middleton B; Kivelä T Pediatr Res; 2004 Nov; 56(5):744-50. PubMed ID: 15347768 [TBL] [Abstract][Full Text] [Related]
15. Long-chain fatty acid oxidation during early human development. Oey NA; den Boer ME; Wijburg FA; Vekemans M; Augé J; Steiner C; Wanders RJ; Waterham HR; Ruiter JP; Attié-Bitach T Pediatr Res; 2005 Jun; 57(6):755-9. PubMed ID: 15845636 [TBL] [Abstract][Full Text] [Related]
16. Child neurology: Recurrent rhabdomyolysis due to a fatty acid oxidation disorder. Terrone G; Ruoppolo M; Brunetti-Pierri N; Cozzolino C; Scolamiero E; Parenti G; Romano A; Andria G; Salvatore F; Frisso G Neurology; 2014 Jan; 82(1):e1-4. PubMed ID: 24379101 [No Abstract] [Full Text] [Related]
17. Muscle MRI in patients with long-chain fatty acid oxidation disorders. Diekman EF; van der Pol WL; Nievelstein RA; Houten SM; Wijburg FA; Visser G J Inherit Metab Dis; 2014 May; 37(3):405-13. PubMed ID: 24305961 [TBL] [Abstract][Full Text] [Related]
18. Effects of fasting, feeding and exercise on plasma acylcarnitines among subjects with CPT2D, VLCADD and LCHADD/TFPD. Elizondo G; Matern D; Vockley J; Harding CO; Gillingham MB Mol Genet Metab; 2020; 131(1-2):90-97. PubMed ID: 32928639 [TBL] [Abstract][Full Text] [Related]
20. Accumulation of 3-hydroxy-fatty acids in the culture medium of long-chain L-3-hydroxyacyl CoA dehydrogenase (LCHAD) and mitochondrial trifunctional protein-deficient skin fibroblasts: implications for medium chain triglyceride dietary treatment of LCHAD deficiency. Jones PM; Butt Y; Bennett MJ Pediatr Res; 2003 May; 53(5):783-7. PubMed ID: 12621125 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]