These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

70 related articles for article (PubMed ID: 24946213)

  • 1. A new method to determine dispersive surface energy site distributions by inverse gas chromatography.
    Smith RR; Williams DR; Burnett DJ; Heng JY
    Langmuir; 2014 Jul; 30(27):8029-35. PubMed ID: 24946213
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Effect of Polymorphism on Surface Energetics of D-Mannitol Polymorphs.
    Smith RR; Shah UV; Parambil JV; Burnett DJ; Thielmann F; Heng JY
    AAPS J; 2017 Jan; 19(1):103-109. PubMed ID: 27631557
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Determination of surface heterogeneity of D-mannitol by sessile drop contact angle and finite concentration inverse gas chromatography.
    Ho R; Hinder SJ; Watts JF; Dilworth SE; Williams DR; Heng JY
    Int J Pharm; 2010 Mar; 387(1-2):79-86. PubMed ID: 20006691
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Use of surface energy distributions by inverse gas chromatography to understand mechanofusion processing and functionality of lactose coated with magnesium stearate.
    Das SC; Zhou Q; Morton DA; Larson I; Stewart PJ
    Eur J Pharm Sci; 2011 Jul; 43(4):325-33. PubMed ID: 21621612
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Physicochemical characterization of D-mannitol polymorphs: the challenging surface energy determination by inverse gas chromatography in the infinite dilution region.
    Cares-Pacheco MG; Vaca-Medina G; Calvet R; Espitalier F; Letourneau JJ; Rouilly A; Rodier E
    Int J Pharm; 2014 Nov; 475(1-2):69-81. PubMed ID: 25151549
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Application of molecular modelling to determine the surface energy of mannitol.
    Saxena A; Kendrick J; Grimsey I; Mackin L
    Int J Pharm; 2007 Oct; 343(1-2):173-80. PubMed ID: 17714893
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inverse gas chromatographic method for measuring the dispersive surface energy distribution for particulates.
    Ylä-Mäihäniemi PP; Heng JY; Thielmann F; Williams DR
    Langmuir; 2008 Sep; 24(17):9551-7. PubMed ID: 18680326
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Investigation to find a suitable reference material for use as an inverse gas chromatography system suitability test.
    Stapley J; Buckton G; Merrifield D
    Int J Pharm; 2006 Aug; 318(1-2):22-7. PubMed ID: 16644152
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Determination of the polar and total surface energy distributions of particulates by inverse gas chromatography.
    Das SC; Larson I; Morton DA; Stewart PJ
    Langmuir; 2011 Jan; 27(2):521-3. PubMed ID: 21174410
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Surface energy characteristics of toner particles by automated inverse gas chromatography.
    Seger LH; Wouters ME; Bos M; van den Berg JW; Vancso GJ
    J Chromatogr A; 2002 Sep; 969(1-2):215-27. PubMed ID: 12385393
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inverse gas chromatography applications: a review.
    Mohammadi-Jam S; Waters KE
    Adv Colloid Interface Sci; 2014 Oct; 212():21-44. PubMed ID: 25092057
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Surface properties of calcium and magnesium oxide nanopowders grafted with unsaturated carboxylic acids studied with inverse gas chromatography.
    Maciejewska M; Krzywania-Kaliszewska A; Zaborski M
    J Chromatogr A; 2012 Sep; 1257():141-8. PubMed ID: 22907042
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of crystal habits on the surface energy and cohesion of crystalline powders.
    Shah UV; Olusanmi D; Narang AS; Hussain MA; Gamble JF; Tobyn MJ; Heng JY
    Int J Pharm; 2014 Sep; 472(1-2):140-7. PubMed ID: 24928138
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of interparticle structuring on the surface energetics of a binary powder system.
    Karde V; Guo M; Heng JYY
    Int J Pharm; 2020 May; 581():119295. PubMed ID: 32247815
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of Microporous Aluminas by Inverse Gas Chromatography.
    Thielmann F; Baumgarten E
    J Colloid Interface Sci; 2000 Sep; 229(2):418-422. PubMed ID: 10985820
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparison of Dorris-Gray and Schultz methods for the calculation of surface dispersive free energy by inverse gas chromatography.
    Shi B; Wang Y; Jia L
    J Chromatogr A; 2011 Feb; 1218(6):860-2. PubMed ID: 21195412
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Surface energies of hydrophobic interaction chromatography media by inverse liquid chromatography.
    Bednar I; Tscheliessnig R; Berger E; Podgornik A; Jungbauer A
    J Chromatogr A; 2012 Jan; 1220():115-21. PubMed ID: 22196242
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effective surface energy of heterogeneous solids measured by inverse gas chromatography at infinite dilution.
    Sun C; Berg JC
    J Colloid Interface Sci; 2003 Apr; 260(2):443-8. PubMed ID: 12686198
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Finite Dilution Inverse Gas Chromatography as a Versatile Tool To Determine the Surface Properties of Biofillers for Plastic Composite Applications.
    Yao Z; Ge L; Yang W; Xia M; Ji X; Jin M; Tang J; Dienstmaier J
    Anal Chem; 2015 Jul; 87(13):6724-9. PubMed ID: 26017338
    [TBL] [Abstract][Full Text] [Related]  

  • 20. On the effect of a non-ionic surfactant on the surface of sucrose crystals and on the crystal growth process by inverse gas chromatography.
    Kumar KV; Rocha F
    J Chromatogr A; 2009 Nov; 1216(48):8528-34. PubMed ID: 19853258
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.