These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

90 related articles for article (PubMed ID: 24946591)

  • 21. Fate of extracellular polymeric substances of anaerobically digested sewage sludge during pre-dewatering conditioning with Acidithiobacillus ferrooxidans culture.
    Murugesan K; Ravindran B; Selvam A; Kurade MB; Yu SM; Wong JW
    Bioresour Technol; 2016 Oct; 217():173-8. PubMed ID: 27040507
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The growth, ferrous iron oxidation and ultrastructure of Acidithiobacillus ferrooxidans in the presence of dibutyl phthalate.
    Matlakowska R; Skudlarska E; Skłodowska A
    Pol J Microbiol; 2006; 55(3):203-10. PubMed ID: 17338273
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Biosynthesis of nanocrystal akaganéite from FeCl2 solution oxidized by Acidithiobacillus ferrooxidans cells.
    Xiong H; Liao Y; Zhou L; Xu Y; Wang S
    Environ Sci Technol; 2008 Jun; 42(11):4165-9. PubMed ID: 18589982
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Recovery of valuable metals from electroplating sludge with reducing additives via vitrification.
    Huang R; Huang KL; Lin ZY; Wang JW; Lin C; Kuo YM
    J Environ Manage; 2013 Nov; 129():586-92. PubMed ID: 24036091
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Supplementation of inorganic phosphate enhancing the removal efficiency of tannery sludge-borne Cr through bioleaching.
    Zheng G; Zhou L
    Water Res; 2011 Oct; 45(16):5295-301. PubMed ID: 21864881
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Adaptive responses of chemolithoautotrophic acidophilic Acidithiobacillus ferrooxidans to sewage sludge.
    Matlakowska R; Sklodowska A
    J Appl Microbiol; 2007 Jun; 102(6):1485-98. PubMed ID: 17578413
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Synthesis and properties of ternary (K, NH₄, H₃O)-jarosites precipitated from Acidithiobacillus ferrooxidans cultures in simulated bioleaching solutions.
    Jones FS; Bigham JM; Gramp JP; Tuovinen OH
    Mater Sci Eng C Mater Biol Appl; 2014 Nov; 44():391-9. PubMed ID: 25280720
    [TBL] [Abstract][Full Text] [Related]  

  • 28. [Study on immobilization of Acidithiobacillus ferrooxidans using PVA-Ca(NO3)2 method].
    Wang YJ; Li HY
    Wei Sheng Wu Xue Bao; 2006 Jun; 46(3):456-9. PubMed ID: 16933620
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Synthesis of argentojarosite with simulated bioleaching solutions produced by Acidithiobacillus ferrooxidans.
    Mukherjee C; Jones FS; Bigham JM; Tuovinen OH
    Mater Sci Eng C Mater Biol Appl; 2016 Sep; 66():164-169. PubMed ID: 27207050
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Immobilization of Acidithiobacillus ferrooxidans on cotton gauze for biological oxidation of ferrous ions in a batch bioreactor.
    Zhu N; Shi C; Shang R; Yang C; Xu Z; Wu P
    Biotechnol Appl Biochem; 2017 Sep; 64(5):727-734. PubMed ID: 26621070
    [TBL] [Abstract][Full Text] [Related]  

  • 31. [Bioleaching kinetic of a pyrite mining residue using organic wastes as culture media for Acidithiobacillus ferrooxidans].
    Drogui P; Picher S; Mercier G; Blais JF
    Environ Technol; 2003 Nov; 24(11):1413-23. PubMed ID: 14733394
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Immobilization of Acidithiobacillus ferrooxidans on Cotton Gauze for the Bioleaching of Waste Printed Circuit Boards.
    Nie H; Zhu N; Cao Y; Xu Z; Wu P
    Appl Biochem Biotechnol; 2015 Oct; 177(3):675-88. PubMed ID: 26239442
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Microbial removal of uranium in uranium-bearing black shale.
    Lee JU; Kim SM; Kim KW; Kim IS
    Chemosphere; 2005 Mar; 59(1):147-54. PubMed ID: 15698655
    [TBL] [Abstract][Full Text] [Related]  

  • 34. [Influence of bioleaching on dewaterability of cattle biogas slurry].
    Zhou J; Zhou LX; Liu FW; Ren Y; Wang DZ
    Huan Jing Ke Xue; 2011 Nov; 32(11):3400-4. PubMed ID: 22295641
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Optimization of Fe2 +/solids content ratio for a novel sludge heavy metal bioleaching process.
    Wong JW; Gu XY
    Water Sci Technol; 2008; 57(3):445-50. PubMed ID: 18309225
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Bacterial removal of chromium (VI) and (III) in a continuous system.
    Cabrera G; Viera M; Gómez JM; Cantero D; Donati E
    Biodegradation; 2007 Aug; 18(4):505-13. PubMed ID: 17091343
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The effect of CO2 availability on the growth, iron oxidation and CO2-fixation rates of pure cultures of Leptospirillum ferriphilum and Acidithiobacillus ferrooxidans.
    Bryan CG; Davis-Belmar CS; van Wyk N; Fraser MK; Dew D; Rautenbach GF; Harrison ST
    Biotechnol Bioeng; 2012 Jul; 109(7):1693-703. PubMed ID: 22383083
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Kinetics of pyrite, pyrrhotite, and chalcopyrite dissolution by Acidithiobacillus ferrooxidans.
    Kocaman AT; Cemek M; Edwards KJ
    Can J Microbiol; 2016 Aug; 62(8):629-42. PubMed ID: 27332502
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Heterotrophic microorganism Rhodotorula mucilaginosa R30 improves tannery sludge bioleaching through elevating dissolved CO2 and extracellular polymeric substances levels in bioleach solution as well as scavenging toxic DOM to Acidithiobacillus species.
    Wang S; Zheng G; Zhou L
    Water Res; 2010 Oct; 44(18):5423-31. PubMed ID: 20633920
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Using biochemical system to improve cinnabar dissolution.
    Wang YJ; Li HY; Hu HF; Li DP; Yang YJ; Liu C
    Bioresour Technol; 2013 Mar; 132():1-4. PubMed ID: 23384822
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.