These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 24946602)

  • 1. [Research on characteristic of interrelationship between toxic organic compound BPA and Chlorella vulgaris].
    Chen SJ; Chen XR; Yan L; Zhao JG; Zhang F; Jiang ZJ
    Huan Jing Ke Xue; 2014 Apr; 35(4):1457-61. PubMed ID: 24946602
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Toxicity and biotransformation of bisphenol S in freshwater green alga Chlorella vulgaris.
    Ding T; Li W; Yang M; Yang B; Li J
    Sci Total Environ; 2020 Dec; 747():141144. PubMed ID: 32777496
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Removal and biodegradation of nonylphenol by immobilized Chlorella vulgaris.
    Gao QT; Wong YS; Tam NF
    Bioresour Technol; 2011 Nov; 102(22):10230-8. PubMed ID: 21944284
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biodegradation of Bisphenol-A in aerobic membrane bioreactor sludge.
    Seyhi B; Drogui P; Buelna G; Blais JF
    Water Sci Technol; 2013; 68(9):1926-31. PubMed ID: 24225091
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Removal and biodegradation of nonylphenol by different Chlorella species.
    Gao QT; Wong YS; Tam NF
    Mar Pollut Bull; 2011; 63(5-12):445-51. PubMed ID: 21507429
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cometabolic degradation of bisphenol A by pure culture of Ralstonia eutropha and metabolic pathway analysis.
    Babatabar S; Zamir SM; Shojaosadati SA; Yakhchali B; Zarch AB
    J Biosci Bioeng; 2019 Jun; 127(6):732-737. PubMed ID: 30598401
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The growth behavior of Chlorella vulgaris in the presence of 4-chlorophenol and 2,4-dichlorophenol.
    Sahinkaya E; Dilek FB
    Ecotoxicol Environ Saf; 2009 Mar; 72(3):781-6. PubMed ID: 18192013
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhanced Phytoremediation of Bisphenol A in Polluted Lake Water by Seedlings of
    Zhao C; Zhang G; Jiang J
    Int J Environ Res Public Health; 2021 Jan; 18(2):. PubMed ID: 33477860
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biodegradation of bisphenol A by an algal-bacterial system.
    Eio EJ; Kawai M; Niwa C; Ito M; Yamamoto S; Toda T
    Environ Sci Pollut Res Int; 2015 Oct; 22(19):15145-53. PubMed ID: 26013738
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bioaccumulation and elimination of bisphenol a (BPA) in the alga Chlorella pyrenoidosa and the potential for trophic transfer to the rotifer Brachionus calyciflorus.
    Guo R; Du Y; Zheng F; Wang J; Wang Z; Ji R; Chen J
    Environ Pollut; 2017 Aug; 227():460-467. PubMed ID: 28494397
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluation of the Removal of Potassium Cyanide and its Toxicity in Green Algae (Chlorella vulgaris).
    Liu Q; Zhang G; Ding J; Zou H; Shi H; Huang C
    Bull Environ Contam Toxicol; 2018 Feb; 100(2):228-233. PubMed ID: 29159542
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of arsenate (AS5+) on growth and production of glutathione (GSH) and phytochelatins (PCS) in Chlorella vulgaris.
    Jiang Y; Purchase D; Jones H; Garelick H
    Int J Phytoremediation; 2011 Sep; 13(8):834-44. PubMed ID: 21972522
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Sensitivity of Chlorella vulgaris to metribuzin, puma and alachlor].
    Yang Z; Dong B; Wu J
    Ying Yong Sheng Tai Xue Bao; 2004 Sep; 15(9):1621-5. PubMed ID: 15669497
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bisphenol A Removal by Submerged Macrophytes and the Contribution of Epiphytic Microorganisms to the Removal Process.
    Zhang G; Wang Y; Jiang J; Yang S
    Bull Environ Contam Toxicol; 2017 Jun; 98(6):770-775. PubMed ID: 28361461
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Acute and chronic toxic effects of bisphenol A on Chlorella pyrenoidosa and Scenedesmus obliquus.
    Zhang W; Xiong B; Sun WF; An S; Lin KF; Guo MJ; Cui XH
    Environ Toxicol; 2014 Jun; 29(6):714-22. PubMed ID: 22887798
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Culture of a high-chlorophyll-producing and halotolerant Chlorella vulgaris.
    Nakanishi K; Deuchi K
    J Biosci Bioeng; 2014 May; 117(5):617-9. PubMed ID: 24331982
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of Bisphenol A on the extremophilic microalgal strain Picocystis sp. (Chlorophyta) and its high BPA removal ability.
    Ben Ouada S; Ben Ali R; Leboulanger C; Ben Ouada H; Sayadi S
    Ecotoxicol Environ Saf; 2018 Aug; 158():1-8. PubMed ID: 29656159
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of L-glutamic acid on the growth and ammonium removal from ammonium solution and natural wastewater by Chlorella vulgaris NTM06.
    Khan M; Yoshida N
    Bioresour Technol; 2008 Feb; 99(3):575-82. PubMed ID: 17321741
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biodegradation of bisphenol A and disappearance of its estrogenic activity by the green alga Chlorella fusca var. vacuolata.
    Hirooka T; Nagase H; Uchida K; Hiroshige Y; Ehara Y; Nishikawa J; Nishihara T; Miyamoto K; Hirata Z
    Environ Toxicol Chem; 2005 Aug; 24(8):1896-901. PubMed ID: 16152959
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cyanobacterium Microcystis aeruginosa response to pentachlorophenol and comparison with that of the microalga Chlorella vulgaris.
    de Morais P; Stoichev T; Basto MC; Ramos V; Vasconcelos VM; Vasconcelos MT
    Water Res; 2014 Apr; 52():63-72. PubMed ID: 24462928
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.