BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 24946708)

  • 21. Ecotoxicological QSAR modeling of organic compounds against fish: Application of fragment based descriptors in feature analysis.
    Khan K; Baderna D; Cappelli C; Toma C; Lombardo A; Roy K; Benfenati E
    Aquat Toxicol; 2019 Jul; 212():162-174. PubMed ID: 31128417
    [TBL] [Abstract][Full Text] [Related]  

  • 22. QSAR study of the acute toxicity to fathead minnow based on a large dataset.
    Wu X; Zhang Q; Hu J
    SAR QSAR Environ Res; 2016; 27(2):147-64. PubMed ID: 26911563
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Acute aquatic toxicity of organic solvents modeled by QSARs.
    Levet A; Bordes C; Clément Y; Mignon P; Morell C; Chermette H; Marote P; Lantéri P
    J Mol Model; 2016 Dec; 22(12):288. PubMed ID: 27830479
    [TBL] [Abstract][Full Text] [Related]  

  • 24. An in silico algal toxicity model with a wide applicability potential for industrial chemicals and pharmaceuticals.
    Önlü S; Saçan MT
    Environ Toxicol Chem; 2017 Apr; 36(4):1012-1019. PubMed ID: 27617782
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Quantitative structure-activity relationships (QSARs) using the novel marine algal toxicity data of phenols.
    Ertürk MD; Saçan MT; Novic M; Minovski N
    J Mol Graph Model; 2012 Sep; 38():90-100. PubMed ID: 23085159
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Environmental toxicological fate prediction of diverse organic chemicals based on steady-state compartmental chemical mass ratio using quantitative structure-fate relationship (QSFR) models.
    Pramanik S; Roy K
    Chemosphere; 2013 Jul; 92(5):600-7. PubMed ID: 23642702
    [TBL] [Abstract][Full Text] [Related]  

  • 27. QSAR models for antioxidant activity of new coumarin derivatives.
    Erzincan P; Saçan MT; Yüce-Dursun B; Danış Ö; Demir S; Erdem SS; Ogan A
    SAR QSAR Environ Res; 2015; 26(7-9):721-37. PubMed ID: 26470736
    [TBL] [Abstract][Full Text] [Related]  

  • 28. QSAR modeling of toxicity of diverse organic chemicals to Daphnia magna using 2D and 3D descriptors.
    Kar S; Roy K
    J Hazard Mater; 2010 May; 177(1-3):344-51. PubMed ID: 20045248
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Development of predictive models for silicone rubber-water partition coefficients of hydrophobic organic contaminants.
    Sun H; Yang X; Li X; Jin X
    Environ Sci Process Impacts; 2019 Dec; 21(12):2020-2030. PubMed ID: 31589229
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A multipronged QSAR approach to predict algal low-toxic-effect concentrations of substituted phenols and anilines.
    Tugcu G; Saçan MT
    J Hazard Mater; 2018 Feb; 344():893-901. PubMed ID: 29190587
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Modeling adsorption of organic pollutants onto single-walled carbon nanotubes with theoretical molecular descriptors using MLR and SVM algorithms.
    Wang Y; Chen J; Tang W; Xia D; Liang Y; Li X
    Chemosphere; 2019 Jan; 214():79-84. PubMed ID: 30261420
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Development of models predicting biodegradation rate rating with multiple linear regression and support vector machine algorithms.
    Tang W; Li Y; Yu Y; Wang Z; Xu T; Chen J; Lin J; Li X
    Chemosphere; 2020 Aug; 253():126666. PubMed ID: 32289603
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Description of the electronic structure of organic chemicals using semiempirical and ab initio methods for development of toxicological QSARs.
    Netzeva TI; Aptula AO; Benfenati E; Cronin MT; Gini G; Lessigiarska I; Maran U; Vracko M; Schüürmann G
    J Chem Inf Model; 2005; 45(1):106-14. PubMed ID: 15667135
    [TBL] [Abstract][Full Text] [Related]  

  • 34. QSAR analysis of the toxicity of aromatic compounds to Chlorella vulgaris in a novel short-term assay.
    Netzeva TI; Dearden JC; Edwards R; Worgan AD; Cronin MT
    J Chem Inf Comput Sci; 2004; 44(1):258-65. PubMed ID: 14741035
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Hazard of pharmaceuticals for aquatic environment: Prioritization by structural approaches and prediction of ecotoxicity.
    Sangion A; Gramatica P
    Environ Int; 2016 Oct; 95():131-43. PubMed ID: 27568576
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Towards global QSAR model building for acute toxicity: Munro database case study.
    Chavan S; Nicholls IA; Karlsson BC; Rosengren AM; Ballabio D; Consonni V; Todeschini R
    Int J Mol Sci; 2014 Oct; 15(10):18162-74. PubMed ID: 25302621
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Predicting Cytotoxicity and Enzymatic Activity of Diverse Chemicals Using Goldfish Scale Tissue and Topminnow Hepatoma Cell Line-based Data.
    Kahraman EN; Saçan MT
    Mol Inform; 2019 Aug; 38(8-9):e1800127. PubMed ID: 30730112
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Development of pp-LFER and QSPR models for predicting the diffusion coefficients of hydrophobic organic compounds in LDPE.
    Zhu T; Jiang Y; Cheng H; Singh RP; Yan B
    Ecotoxicol Environ Saf; 2020 Mar; 190():110179. PubMed ID: 31927194
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Linear regression and computational neural network prediction of tetrahymena acute toxicity for aromatic compounds from molecular structure.
    Serra JR; Jurs PC; Kaiser KL
    Chem Res Toxicol; 2001 Nov; 14(11):1535-45. PubMed ID: 11712912
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Predictive modeling of chemical toxicity towards Pseudokirchneriella subcapitata using regression and classification based approaches.
    Pramanik S; Roy K
    Ecotoxicol Environ Saf; 2014 Mar; 101():184-90. PubMed ID: 24507144
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.