These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 24946708)

  • 61. Predicting aquatic toxicities of chemical pesticides in multiple test species using nonlinear QSTR modeling approaches.
    Basant N; Gupta S; Singh KP
    Chemosphere; 2015 Nov; 139():246-55. PubMed ID: 26142614
    [TBL] [Abstract][Full Text] [Related]  

  • 62. QSAR study for carcinogenicity in a large set of organic compounds.
    Duchowicz PR; Comelli NC; Ortiz EV; Castro EA
    Curr Drug Saf; 2012 Sep; 7(4):282-8. PubMed ID: 23062240
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Quantitative structure-activity relationship models for prediction of sensory irritants (logRD50) of volatile organic chemicals.
    Luan F; Ma W; Zhang X; Zhang H; Liu M; Hu Z; Fan BT
    Chemosphere; 2006 May; 63(7):1142-53. PubMed ID: 16307788
    [TBL] [Abstract][Full Text] [Related]  

  • 64. [Linear and nonlinear QSAR models of acute intravenous toxicity to mice for organic chemicals].
    Raevskiĭ OA; Liplavskaia EA; Iarkov AV; Raevskaia OE; Vorts AP
    Biomed Khim; 2012; 58(4):357-71. PubMed ID: 23413681
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Understanding the toxic potencies of xenobiotics inducing TCDD/TCDF-like effects.
    Şahin AD; Saçan MT
    SAR QSAR Environ Res; 2018 Feb; 29(2):117-131. PubMed ID: 29308921
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Characterization of skin penetration processes of organic molecules using molecular similarity and QSAR analysis.
    Santos-Filho OA; Hopfinger AJ; Zheng T
    Mol Pharm; 2004; 1(6):466-76. PubMed ID: 16028358
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Quantitative structure-activity relationship modeling of rat acute toxicity by oral exposure.
    Zhu H; Martin TM; Ye L; Sedykh A; Young DM; Tropsha A
    Chem Res Toxicol; 2009 Dec; 22(12):1913-21. PubMed ID: 19845371
    [TBL] [Abstract][Full Text] [Related]  

  • 68. MOA-based linear and nonlinear QSAR models for predicting the toxicity of organic chemicals to Vibrio fischeri.
    Zhang S; Wang N; Su L; Xu X; Li C; Qin W; Zhao Y
    Environ Sci Pollut Res Int; 2020 Mar; 27(9):9114-9125. PubMed ID: 31916172
    [TBL] [Abstract][Full Text] [Related]  

  • 69. [QSAR investigation of acute toxicity of organic compounds during oral administration to mice].
    Tinkov OV; Grigorev VY; Polishchuk PG; Yarkov AV; Raevsky OA
    Biomed Khim; 2019 Feb; 65(2):123-132. PubMed ID: 30950817
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Structure-toxicity relationships for aliphatic chemicals evaluated with Tetrahymena pyriformis.
    Schultz TW; Cronin MT; Netzeva TI; Aptula AO
    Chem Res Toxicol; 2002 Dec; 15(12):1602-9. PubMed ID: 12482243
    [TBL] [Abstract][Full Text] [Related]  

  • 71. A DFT-based QSAR study of the toxicity of quaternary ammonium compounds on Chlorella vulgaris.
    Zhu M; Ge F; Zhu R; Wang X; Zheng X
    Chemosphere; 2010 Jun; 80(1):46-52. PubMed ID: 20417544
    [TBL] [Abstract][Full Text] [Related]  

  • 72. QNA-based 'Star Track' QSAR approach.
    Filimonov DA; Zakharov AV; Lagunin AA; Poroikov VV
    SAR QSAR Environ Res; 2009 Oct; 20(7-8):679-709. PubMed ID: 20024804
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Exploring the role of quantum chemical descriptors in modeling acute toxicity of diverse chemicals to Daphnia magna.
    Reenu ; Vikas
    J Mol Graph Model; 2015 Sep; 61():89-101. PubMed ID: 26188798
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Prediction of acute aquatic toxicity toward Daphnia magna by using the GA-kNN method.
    Cassotti M; Ballabio D; Consonni V; Mauri A; Tetko IV; Todeschini R
    Altern Lab Anim; 2014 Mar; 42(1):31-41. PubMed ID: 24773486
    [TBL] [Abstract][Full Text] [Related]  

  • 75. In Silico Prediction of the Toxicity of Nitroaromatic Compounds: Application of Ensemble Learning QSAR Approach.
    Daghighi A; Casanola-Martin GM; Timmerman T; Milenković D; Lučić B; Rasulev B
    Toxics; 2022 Dec; 10(12):. PubMed ID: 36548579
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Ecotoxicological Modeling, Ranking and Prioritization of Pharmaceuticals Using QSTR and i-QSTTR Approaches: Application of 2D and Fragment Based Descriptors.
    Khan K; Kar S; Sanderson H; Roy K; Leszczynski J
    Mol Inform; 2019 Aug; 38(8-9):e1800078. PubMed ID: 30474352
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Recommendations for Improving Methods and Models for Aquatic Hazard Assessment of Ionizable Organic Chemicals.
    Escher BI; Abagyan R; Embry M; Klüver N; Redman AD; Zarfl C; Parkerton TF
    Environ Toxicol Chem; 2020 Feb; 39(2):269-286. PubMed ID: 31569266
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Predictability and prediction of lowest observed adverse effect levels in a structurally heterogeneous set of chemicals.
    de Julián-Ortiz JV; García-Domenech R; Gálvez J; Pogliani L
    SAR QSAR Environ Res; 2005 Jun; 16(3):263-72. PubMed ID: 15804813
    [TBL] [Abstract][Full Text] [Related]  

  • 79. A quantitative structure property relationship for prediction of solubilization of hazardous compounds using GA-based MLR in CTAB micellar media.
    Ghasemi JB; Abdolmaleki A; Mandoumi N
    J Hazard Mater; 2009 Jan; 161(1):74-80. PubMed ID: 18456399
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Application of GA-MLR for QSAR Modeling of the Arylthioindole Class of Tubulin Polymerization Inhibitors as Anticancer Agents.
    Ahmadi S; Habibpour E
    Anticancer Agents Med Chem; 2017; 17(4):552-565. PubMed ID: 27528182
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.