These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
151 related articles for article (PubMed ID: 24947124)
1. Folding-upon-binding and signal-on electrochemical DNA sensor with high affinity and specificity. Idili A; Amodio A; Vidonis M; Feinberg-Somerson J; Castronovo M; Ricci F Anal Chem; 2014 Sep; 86(18):9013-9. PubMed ID: 24947124 [TBL] [Abstract][Full Text] [Related]
2. Electrochemical biosensors employing an internal electrode attachment site and achieving reversible, high gain detection of specific nucleic acid sequences. Rowe AA; Chuh KN; Lubin AA; Miller EA; Cook B; Hollis D; Plaxco KW Anal Chem; 2011 Dec; 83(24):9462-6. PubMed ID: 21975121 [TBL] [Abstract][Full Text] [Related]
3. Effects of DNA probe and target flexibility on the performance of a "signal-on" electrochemical DNA sensor. Wu Y; Lai RY Anal Chem; 2014 Sep; 86(17):8888-95. PubMed ID: 25110351 [TBL] [Abstract][Full Text] [Related]
4. An electrochemical DNA sensor without electrode pre-modification. Hong N; Cheng L; Wei B; Chen C; He LL; Kong D; Ceng J; Cui HF; Fan H Biosens Bioelectron; 2017 May; 91():110-114. PubMed ID: 28011414 [TBL] [Abstract][Full Text] [Related]
5. Molecular beacon mediated circular strand displacement strategy for constructing a ratiometric electrochemical deoxyribonucleic acid sensor. Gao F; Du L; Zhang Y; Tang D; Du Y Anal Chim Acta; 2015 Jul; 883():67-73. PubMed ID: 26088778 [TBL] [Abstract][Full Text] [Related]
6. An electrochemical DNA sensor for sequence-specific DNA recognization in a homogeneous solution. Cui HF; Cheng L; Zhang J; Liu R; Zhang C; Fan H Biosens Bioelectron; 2014 Jun; 56():124-8. PubMed ID: 24480127 [TBL] [Abstract][Full Text] [Related]
7. Anomalous Trends in Nucleic Acid-Based Electrochemical Biosensors with Nanoporous Gold Electrodes. Veselinovic J; Almashtoub S; Seker E Anal Chem; 2019 Sep; 91(18):11923-11931. PubMed ID: 31429540 [TBL] [Abstract][Full Text] [Related]
8. Development of a "signal-on" electrochemical DNA sensor with an oligo-thymine spacer for point mutation detection. Wu Y; Lai RY Chem Commun (Camb); 2013 Apr; 49(33):3422-4. PubMed ID: 23503676 [TBL] [Abstract][Full Text] [Related]
9. Electrochemical nanoporous alumina membrane-based label-free DNA biosensor for the detection of Legionella sp. Rai V; Deng J; Toh CS Talanta; 2012 Aug; 98():112-7. PubMed ID: 22939135 [TBL] [Abstract][Full Text] [Related]
10. Detection of DNA Hybridization by Methylene Blue Electrochemistry at Activated Nanoelectrode Ensembles. Silvestrini M; Fruk L; Moretto LM; Ugo P J Nanosci Nanotechnol; 2015 May; 15(5):3437-42. PubMed ID: 26504963 [TBL] [Abstract][Full Text] [Related]
11. A label-free electrochemical DNA sensor using methylene blue as redox indicator based on an exonuclease III-aided target recycling strategy. Lin C; Wu Y; Luo F; Chen D; Chen X Biosens Bioelectron; 2014 Sep; 59():365-9. PubMed ID: 24752147 [TBL] [Abstract][Full Text] [Related]
12. The utilization of SiNWs/AuNPs-modified indium tin oxide (ITO) in fabrication of electrochemical DNA sensor. Rashid JI; Yusof NA; Abdullah J; Hashim U; Hajian R Mater Sci Eng C Mater Biol Appl; 2014 Dec; 45():270-6. PubMed ID: 25491829 [TBL] [Abstract][Full Text] [Related]
13. Target-induced reconfiguration of DNA probes for recycling amplification and signal-on electrochemical detection of hereditary tyrosinemia type I gene. Dou B; Yang C; Chai Y; Yuan R; Xiang Y Analyst; 2015 Sep; 140(17):5981-6. PubMed ID: 26181647 [TBL] [Abstract][Full Text] [Related]
14. A reagentless and reusable electrochemical DNA sensor based on target hybridization-induced stem-loop probe formation. Yu ZG; Lai RY Chem Commun (Camb); 2012 Nov; 48(85):10523-5. PubMed ID: 22992567 [TBL] [Abstract][Full Text] [Related]
15. Enhanced recognition of single-base mismatch using locked nucleic acid-integrated hairpin DNA probes revealed by atomic force microscopy nanolithography. Han WH; Liao JM; Chen KL; Wu SM; Chiang YW; Lo ST; Chen CL; Chiang CM Anal Chem; 2010 Mar; 82(6):2395-400. PubMed ID: 20175522 [TBL] [Abstract][Full Text] [Related]
16. Effect of a Dual Charge on the DNA-Conjugated Redox Probe on DNA Sensing by Short Hairpin Beacons Tethered to Gold Electrodes. Kékedy-Nagy L; Shipovskov S; Ferapontova EE Anal Chem; 2016 Aug; 88(16):7984-90. PubMed ID: 27441419 [TBL] [Abstract][Full Text] [Related]
17. Highly sensitive electrochemical detection of circulating tumor DNA in human blood based on urchin-like gold nanocrystal-multiple graphene aerogel and target DNA-induced recycling double amplification strategy. Yuanfeng P; Ruiyi L; Xiulan S; Guangli W; Zaijun L Anal Chim Acta; 2020 Jul; 1121():17-25. PubMed ID: 32493585 [TBL] [Abstract][Full Text] [Related]
18. A versatile label-free and signal-on electrochemical biosensing platform based on triplex-forming oligonucleotide probe. Wang X; Jiang A; Hou T; Li F Anal Chim Acta; 2015 Aug; 890():91-7. PubMed ID: 26347170 [TBL] [Abstract][Full Text] [Related]
19. Effects of probe length, probe geometry, and redox-tag placement on the performance of the electrochemical E-DNA sensor. Lubin AA; Hunt BV; White RJ; Plaxco KW Anal Chem; 2009 Mar; 81(6):2150-8. PubMed ID: 19215066 [TBL] [Abstract][Full Text] [Related]
20. [Cu(phen)2](2+) acts as electrochemical indicator and anchor to immobilize probe DNA in electrochemical DNA biosensor. Yang L; Li X; Li X; Yan S; Ren Y; Wang M; Liu P; Dong Y; Zhang C Anal Biochem; 2016 Jan; 492():56-62. PubMed ID: 26403602 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]