These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

243 related articles for article (PubMed ID: 24947309)

  • 41. Anti-biofouling conducting polymer nanoparticles as a label-free optical contrast agent for high resolution subsurface biomedical imaging.
    Au KM; Lu Z; Matcher SJ; Armes SP
    Biomaterials; 2013 Nov; 34(35):8925-40. PubMed ID: 23968854
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Hybrid quantum dot-fatty ester stealth nanoparticles: toward clinically relevant in vivo optical imaging of deep tissue.
    Shuhendler AJ; Prasad P; Chan HK; Gordijo CR; Soroushian B; Kolios M; Yu K; O'Brien PJ; Rauth AM; Wu XY
    ACS Nano; 2011 Mar; 5(3):1958-66. PubMed ID: 21338075
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Bright far-red/near-infrared conjugated polymer nanoparticles for in vivo bioimaging.
    Ding D; Liu J; Feng G; Li K; Hu Y; Liu B
    Small; 2013 Sep; 9(18):3093-102. PubMed ID: 23625815
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Functionalization of inorganic nanoparticles for bioimaging applications.
    Erathodiyil N; Ying JY
    Acc Chem Res; 2011 Oct; 44(10):925-35. PubMed ID: 21648430
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Upconverting rare-earth nanoparticles with a paramagnetic lanthanide complex shell for upconversion fluorescent and magnetic resonance dual-modality imaging.
    Wang Y; Ji L; Zhang B; Yin P; Qiu Y; Song D; Zhou J; Li Q
    Nanotechnology; 2013 May; 24(17):175101. PubMed ID: 23558298
    [TBL] [Abstract][Full Text] [Related]  

  • 46. High-contrast fluorescence imaging of tumors in vivo using nanoparticles of amphiphilic brush-like copolymers produced by ROMP.
    Miki K; Kimura A; Oride K; Kuramochi Y; Matsuoka H; Harada H; Hiraoka M; Ohe K
    Angew Chem Int Ed Engl; 2011 Jul; 50(29):6567-70. PubMed ID: 21656616
    [No Abstract]   [Full Text] [Related]  

  • 47. Emergence of two near-infrared windows for in vivo and intraoperative SERS.
    Lane LA; Xue R; Nie S
    Curr Opin Chem Biol; 2018 Aug; 45():95-103. PubMed ID: 29631122
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Recent advances of semiconducting polymer nanoparticles in in vivo molecular imaging.
    Pu K; Chattopadhyay N; Rao J
    J Control Release; 2016 Oct; 240():312-322. PubMed ID: 26773769
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Absorption by water increases fluorescence image contrast of biological tissue in the shortwave infrared.
    Carr JA; Aellen M; Franke D; So PTC; Bruns OT; Bawendi MG
    Proc Natl Acad Sci U S A; 2018 Sep; 115(37):9080-9085. PubMed ID: 30150372
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Transmission in near-infrared optical windows for deep brain imaging.
    Shi L; Sordillo LA; Rodríguez-Contreras A; Alfano R
    J Biophotonics; 2016 Jan; 9(1-2):38-43. PubMed ID: 26556561
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Near-infrared emitting fluorophore-doped calcium phosphate nanoparticles for in vivo imaging of human breast cancer.
    Altinoğlu EI; Russin TJ; Kaiser JM; Barth BM; Eklund PC; Kester M; Adair JH
    ACS Nano; 2008 Oct; 2(10):2075-84. PubMed ID: 19206454
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Post-polymerization C-H Borylation of Donor-Acceptor Materials Gives Highly Efficient Solid State Near-Infrared Emitters for Near-IR-OLEDs and Effective Biological Imaging.
    Crossley DL; Urbano L; Neumann R; Bourke S; Jones J; Dailey LA; Green M; Humphries MJ; King SM; Turner ML; Ingleson MJ
    ACS Appl Mater Interfaces; 2017 Aug; 9(34):28243-28249. PubMed ID: 28783304
    [TBL] [Abstract][Full Text] [Related]  

  • 53. XTEN-annexin A5: XTEN allows complete expression of long-circulating protein-based imaging probes as recombinant alternative to PEGylation.
    Haeckel A; Appler F; Figge L; Kratz H; Lukas M; Michel R; Schnorr J; Zille M; Hamm B; Schellenberger E
    J Nucl Med; 2014 Mar; 55(3):508-14. PubMed ID: 24549285
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Lanthanide-based upconversion nanoparticles for connexin-targeted imaging in co-cultures.
    Nagarajan S; Zhang Y
    Methods Mol Biol; 2013; 1058():97-107. PubMed ID: 23526439
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Ag₂Se quantum dots with tunable emission in the second near-infrared window.
    Zhu CN; Jiang P; Zhang ZL; Zhu DL; Tian ZQ; Pang DW
    ACS Appl Mater Interfaces; 2013 Feb; 5(4):1186-9. PubMed ID: 23380909
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Smart near-infrared fluorescence probes with donor-acceptor structure for in vivo detection of β-amyloid deposits.
    Cui M; Ono M; Watanabe H; Kimura H; Liu B; Saji H
    J Am Chem Soc; 2014 Mar; 136(9):3388-94. PubMed ID: 24555862
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Conjugated-polymer-based red-emitting nanoparticles for two-photon excitation cell imaging with high contrast.
    Li S; Shen X; Li L; Yuan P; Guan Z; Yao SQ; Xu QH
    Langmuir; 2014 Jul; 30(26):7623-7. PubMed ID: 24967827
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Estimation of minimum doses for optimized quantum dot contrast-enhanced vascular imaging in vivo.
    Roy M; Niu CJ; Chen Y; McVeigh PZ; Shuhendler AJ; Leung MK; Mariampillai A; DaCosta RS; Wilson BC
    Small; 2012 Jun; 8(11):1780-92. PubMed ID: 22431228
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Forming biocompatible and nonaggregated nanocrystals in water using amphiphilic polymers.
    Yu WW; Chang E; Falkner JC; Zhang J; Al-Somali AM; Sayes CM; Johns J; Drezek R; Colvin VL
    J Am Chem Soc; 2007 Mar; 129(10):2871-9. PubMed ID: 17309256
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Advances in Fluorescent Single-Chain Nanoparticles.
    De-La-Cuesta J; González E; Pomposo JA
    Molecules; 2017 Oct; 22(11):. PubMed ID: 29072594
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.