These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
99 related articles for article (PubMed ID: 24947396)
1. Microfluidic devices for imaging trafficking events in vivo using genetic model organisms. Mondal S; Koushika SP Methods Mol Biol; 2014; 1174():375-96. PubMed ID: 24947396 [TBL] [Abstract][Full Text] [Related]
2. Simple microfluidic devices for in vivo imaging of C. elegans, Drosophila and zebrafish. Mondal S; Ahlawat S; Koushika SP J Vis Exp; 2012 Sep; (67):. PubMed ID: 23051668 [TBL] [Abstract][Full Text] [Related]
3. Imaging in vivo neuronal transport in genetic model organisms using microfluidic devices. Mondal S; Ahlawat S; Rau K; Venkataraman V; Koushika SP Traffic; 2011 Apr; 12(4):372-85. PubMed ID: 21199219 [TBL] [Abstract][Full Text] [Related]
4. Microfluidic Devices for Behavioral Analysis, Microscopy, and Neuronal Imaging in Caenorhabditis elegans. Lagoy RC; Albrecht DR Methods Mol Biol; 2015; 1327():159-79. PubMed ID: 26423974 [TBL] [Abstract][Full Text] [Related]
5. Microfluidic device for a rapid immobilization of zebrafish larvae in environmental scanning electron microscopy. Akagi J; Zhu F; Skommer J; Hall CJ; Crosier PS; Cialkowski M; Wlodkowic D Cytometry A; 2015 Mar; 87(3):190-4. PubMed ID: 25483307 [TBL] [Abstract][Full Text] [Related]
6. Technologies for micromanipulating, imaging, and phenotyping small invertebrates and vertebrates. Yanik MF; Rohde CB; Pardo-Martin C Annu Rev Biomed Eng; 2011 Aug; 13():185-217. PubMed ID: 21756142 [TBL] [Abstract][Full Text] [Related]
7. Worm chips: microtools for C. elegans biology. Chronis N Lab Chip; 2010 Feb; 10(4):432-7. PubMed ID: 20126682 [TBL] [Abstract][Full Text] [Related]
8. Microfluidic chip-based C. elegans microinjection system for investigating cell-cell communication in vivo. Zhao X; Xu F; Tang L; Du W; Feng X; Liu BF Biosens Bioelectron; 2013 Dec; 50():28-34. PubMed ID: 23831644 [TBL] [Abstract][Full Text] [Related]
9. Revisiting the Krogh Principle in the post-genome era: Caenorhabditis elegans as a model system for integrative physiology research. Strange K J Exp Biol; 2007 May; 210(Pt 9):1622-31. PubMed ID: 17449828 [TBL] [Abstract][Full Text] [Related]
10. Genetic tools for multicolor imaging in zebrafish larvae. Weber T; Köster R Methods; 2013 Aug; 62(3):279-91. PubMed ID: 23886907 [TBL] [Abstract][Full Text] [Related]
12. Micro-scale and microfluidic devices for neurobiology. Taylor AM; Jeon NL Curr Opin Neurobiol; 2010 Oct; 20(5):640-7. PubMed ID: 20739175 [TBL] [Abstract][Full Text] [Related]
13. An automated microfluidic platform for calcium imaging of chemosensory neurons in Caenorhabditis elegans. Chokshi TV; Bazopoulou D; Chronis N Lab Chip; 2010 Oct; 10(20):2758-63. PubMed ID: 20820480 [TBL] [Abstract][Full Text] [Related]
14. On-chip functional neuroimaging with mechanical stimulation in Caenorhabditis elegans larvae for studying development and neural circuits. Cho Y; Oakland DN; Lee SA; Schafer WR; Lu H Lab Chip; 2018 Feb; 18(4):601-609. PubMed ID: 29340386 [TBL] [Abstract][Full Text] [Related]
15. Live imaging in Drosophila: The optical and genetic toolkits. Rebollo E; Karkali K; Mangione F; Martín-Blanco E Methods; 2014 Jun; 68(1):48-59. PubMed ID: 24814031 [TBL] [Abstract][Full Text] [Related]
16. C.L.I.P.--continuous live imaging platform for direct observation of C. elegans physiological processes. Krajniak J; Hao Y; Mak HY; Lu H Lab Chip; 2013 Aug; 13(15):2963-71. PubMed ID: 23708469 [TBL] [Abstract][Full Text] [Related]