BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

231 related articles for article (PubMed ID: 24947426)

  • 1. Structural and thermodynamic characterization of the recognition of the S100-binding peptides TRTK12 and p53 by calmodulin.
    Wafer LN; Tzul FO; Pandharipande PP; McCallum SA; Makhatadze GI
    Protein Sci; 2014 Sep; 23(9):1247-61. PubMed ID: 24947426
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thermodynamic and kinetic analysis of peptides derived from CapZ, NDR, p53, HDM2, and HDM4 binding to human S100B.
    Wafer LN; Streicher WW; McCallum SA; Makhatadze GI
    Biochemistry; 2012 Sep; 51(36):7189-201. PubMed ID: 22913742
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Novel interactions of the TRTK12 peptide with S100 protein family members: specificity and thermodynamic characterization.
    Wafer LN; Tzul FO; Pandharipande PP; Makhatadze GI
    Biochemistry; 2013 Aug; 52(34):5844-56. PubMed ID: 23899389
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Solution structure of S100A1 bound to the CapZ peptide (TRTK12).
    Wright NT; Cannon BR; Wilder PT; Morgan MT; Varney KM; Zimmer DB; Weber DJ
    J Mol Biol; 2009 Mar; 386(5):1265-77. PubMed ID: 19452629
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Variable conformation and dynamics of calmodulin complexed with peptides derived from the autoinhibitory domains of target proteins.
    Yao Y; Squier TC
    Biochemistry; 1996 May; 35(21):6815-27. PubMed ID: 8639633
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Design of high-affinity S100-target hybrid proteins.
    Rezvanpour A; Phillips JM; Shaw GS
    Protein Sci; 2009 Dec; 18(12):2528-36. PubMed ID: 19827097
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structurally homologous binding of plant calmodulin isoforms to the calmodulin-binding domain of vacuolar calcium-ATPase.
    Yamniuk AP; Vogel HJ
    J Biol Chem; 2004 Feb; 279(9):7698-707. PubMed ID: 14670974
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thermodynamics of calmodulin trapping by Ca2+/calmodulin-dependent protein kinase II: subpicomolar Kd determined using competition titration calorimetry.
    Tse JK; Giannetti AM; Bradshaw JM
    Biochemistry; 2007 Apr; 46(13):4017-27. PubMed ID: 17352496
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Calcium binding and conformational properties of calmodulin complexed with peptides derived from myristoylated alanine-rich C kinase substrate (MARCKS) and MARCKS-related protein (MRP).
    Porumb T; Crivici A; Blackshear PJ; Ikura M
    Eur Biophys J; 1997; 25(4):239-47. PubMed ID: 9112755
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structured functional domains of myelin basic protein: cross talk between actin polymerization and Ca(2+)-dependent calmodulin interaction.
    Bamm VV; De Avila M; Smith GS; Ahmed MA; Harauz G
    Biophys J; 2011 Sep; 101(5):1248-56. PubMed ID: 21889463
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Physiologically Relevant Free Ca
    Young BD; Varney KM; Wilder PT; Costabile BK; Pozharski E; Cook ME; Godoy-Ruiz R; Clarke OB; Mancia F; Weber DJ
    J Mol Biol; 2021 Nov; 433(22):167272. PubMed ID: 34592217
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Calmodulin binding properties of peptide analogues and fragments of the calmodulin-binding domain of simian immunodeficiency virus transmembrane glycoprotein 41.
    Yuan T; Tencza S; Mietzner TA; Montelaro RC; Vogel HJ
    Biopolymers; 2001 Jan; 58(1):50-62. PubMed ID: 11072229
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structure of the complex of calmodulin with the target sequence of calmodulin-dependent protein kinase I: studies of the kinase activation mechanism.
    Clapperton JA; Martin SR; Smerdon SJ; Gamblin SJ; Bayley PM
    Biochemistry; 2002 Dec; 41(50):14669-79. PubMed ID: 12475216
    [TBL] [Abstract][Full Text] [Related]  

  • 14. NMR studies of caldesmon-calmodulin interactions.
    Zhou N; Yuan T; Mak AS; Vogel HJ
    Biochemistry; 1997 Mar; 36(10):2817-25. PubMed ID: 9062109
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Shared CaM- and S100A1-binding epitopes in the distal TRPM4 N terminus.
    Bousova K; Herman P; Vecer J; Bednarova L; Monincova L; Majer P; Vyklicky L; Vondrasek J; Teisinger J
    FEBS J; 2018 Feb; 285(3):599-613. PubMed ID: 29240297
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Target-induced conformational adaptation of calmodulin revealed by the crystal structure of a complex with nematode Ca(2+)/calmodulin-dependent kinase kinase peptide.
    Kurokawa H; Osawa M; Kurihara H; Katayama N; Tokumitsu H; Swindells MB; Kainosho M; Ikura M
    J Mol Biol; 2001 Sep; 312(1):59-68. PubMed ID: 11545585
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Solution NMR structure of S100B bound to the high-affinity target peptide TRTK-12.
    Inman KG; Yang R; Rustandi RR; Miller KE; Baldisseri DM; Weber DJ
    J Mol Biol; 2002 Dec; 324(5):1003-14. PubMed ID: 12470955
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Recognition of the tumor suppressor protein p53 and other protein targets by the calcium-binding protein S100B.
    Wilder PT; Lin J; Bair CL; Charpentier TH; Yang D; Liriano M; Varney KM; Lee A; Oppenheim AB; Adhya S; Carrier F; Weber DJ
    Biochim Biophys Acta; 2006 Nov; 1763(11):1284-97. PubMed ID: 17010455
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Simultaneous binding of the N- and C-terminal cytoplasmic domains of aquaporin 4 to calmodulin.
    Ishida H; Vogel HJ; Conner AC; Kitchen P; Bill RM; MacDonald JA
    Biochim Biophys Acta Biomembr; 2022 Feb; 1864(2):183837. PubMed ID: 34890582
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Target recognition by calmodulin: dissecting the kinetics and affinity of interaction using short peptide sequences.
    Bayley PM; Findlay WA; Martin SR
    Protein Sci; 1996 Jul; 5(7):1215-28. PubMed ID: 8819155
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.