BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 24947427)

  • 41. Sodium-ascorbate cotransport controls intracellular ascorbate concentration in primary astrocyte cultures expressing the SVCT2 transporter.
    Korcok J; Yan R; Siushansian R; Dixon SJ; Wilson JX
    Brain Res; 2000 Oct; 881(2):144-51. PubMed ID: 11036152
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Tubulin isoforms are differently expressed in developing and mature neurons: a study on the cerebral cortex of newborn and adult rats.
    Farina V; Zedda M; Bianchi M; Marongiu P; De Riu PL
    Eur J Histochem; 1999; 43(4):285-91. PubMed ID: 10682266
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Limited Association Between Ascorbate Concentrations and Vitamin C Transporters in Renal Cell Carcinoma Cells and Clinical Samples.
    Wohlrab C; Vissers MCM; Burgess ER; Nonis M; Phillips E; Robinson BA; Dachs GU
    Cell Physiol Biochem; 2021 Oct; 55(5):553-568. PubMed ID: 34599650
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Vitamin C transport systems of mammalian cells.
    Liang WJ; Johnson D; Jarvis SM
    Mol Membr Biol; 2001; 18(1):87-95. PubMed ID: 11396616
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Functional and physiological role of vitamin C transporters.
    Bürzle M; Hediger MA
    Curr Top Membr; 2012; 70():357-75. PubMed ID: 23177992
    [TBL] [Abstract][Full Text] [Related]  

  • 46. SVCT2 Is Expressed by Cerebellar Precursor Cells, Which Differentiate into Neurons in Response to Ascorbic Acid.
    Oyarce K; Silva-Alvarez C; Ferrada L; Martínez F; Salazar K; Nualart F
    Mol Neurobiol; 2018 Feb; 55(2):1136-1149. PubMed ID: 28097475
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Sodium-dependent ascorbic acid transporter family SLC23.
    Takanaga H; Mackenzie B; Hediger MA
    Pflugers Arch; 2004 Feb; 447(5):677-82. PubMed ID: 12845532
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Ascorbic acid and its transporter SVCT2, affect radial glia cells differentiation in postnatal stages.
    Saldivia N; Salazar K; Cifuentes M; Espinoza F; Harrison FE; Nualart F
    Glia; 2024 Apr; 72(4):708-727. PubMed ID: 38180226
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Impaired intracellular trafficking of sodium-dependent vitamin C transporter 2 contributes to the redox imbalance in Huntington's disease.
    Covarrubias-Pinto A; Parra AV; Mayorga-Weber G; Papic E; Vicencio I; Ehrenfeld P; Rivera FJ; Castro MA
    J Neurosci Res; 2021 Jan; 99(1):223-235. PubMed ID: 32754987
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Localization of the Na(+)-coupled neutral amino acid transporter 2 in the cerebral cortex.
    Melone M; Varoqui H; Erickson JD; Conti F
    Neuroscience; 2006 Jun; 140(1):281-92. PubMed ID: 16616430
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The ascorbic acid transporter SVCT2 is expressed in slow-twitch skeletal muscle fibres.
    Low M; Sandoval D; Avilés E; Pérez F; Nualart F; Henríquez JP
    Histochem Cell Biol; 2009 May; 131(5):565-74. PubMed ID: 19125272
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Vitamin C and oxidative stress in the seminiferous epithelium.
    Angulo C; Maldonado R; Pulgar E; Mancilla H; Córdova A; Villarroel F; Castro MA; Concha II
    Biol Res; 2011; 44(2):169-80. PubMed ID: 22513420
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Increased expression of mitochondrial sodium-coupled ascorbic acid transporter-2 (mitSVCT2) as a central feature in breast cancer.
    Peña E; Roa FJ; Inostroza E; Sotomayor K; González M; Gutierrez-Castro FA; Maurin M; Sweet K; Labrousse C; Gatica M; Aylwin CF; Mendoza P; Maldonado M; Delgado C; Madariaga J; Panes J; Silva-Grecchi T; Concha II; Moraga-Cid G; Reyes AM; Muñoz-Montesino C; Vera JC; Rivas CI
    Free Radic Biol Med; 2019 May; 135():283-292. PubMed ID: 30902760
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Sodium-dependent vitamin C transporter 2 deficiency causes hypomyelination and extracellular matrix defects in the peripheral nervous system.
    Gess B; Röhr D; Fledrich R; Sereda MW; Kleffner I; Humberg A; Nowitzki J; Strecker JK; Halfter H; Young P
    J Neurosci; 2011 Nov; 31(47):17180-92. PubMed ID: 22114285
    [TBL] [Abstract][Full Text] [Related]  

  • 55. SVCT2-Dependent plasma and mitochondrial membrane transport of ascorbic acid in differentiating myoblasts.
    Fiorani M; Scotti M; Guidarelli A; Burattini S; Falcieri E; Cantoni O
    Pharmacol Res; 2020 Sep; 159():105042. PubMed ID: 32580031
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Activation of PKA and phosphorylation of sodium-dependent vitamin C transporter 2 by prostaglandin E2 promote osteoblast-like differentiation in MC3T3-E1 cells.
    Wu X; Zeng LH; Taniguchi T; Xie QM
    Cell Death Differ; 2007 Oct; 14(10):1792-801. PubMed ID: 17585336
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Regulation of embryonic neurotransmitter and tyrosine hydroxylase protein levels by ascorbic acid.
    Meredith ME; May JM
    Brain Res; 2013 Nov; 1539():7-14. PubMed ID: 24095796
    [TBL] [Abstract][Full Text] [Related]  

  • 58. A family of mammalian Na+-dependent L-ascorbic acid transporters.
    Tsukaguchi H; Tokui T; Mackenzie B; Berger UV; Chen XZ; Wang Y; Brubaker RF; Hediger MA
    Nature; 1999 May; 399(6731):70-5. PubMed ID: 10331392
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Odorant receptor expression in the mouse cerebral cortex.
    Otaki JM; Yamamoto H; Firestein S
    J Neurobiol; 2004 Feb; 58(3):315-27. PubMed ID: 14750145
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Ascorbic acid efflux from human brain microvascular pericytes: role of re-uptake.
    May JM; Qu ZC
    Biofactors; 2015; 41(5):330-8. PubMed ID: 26340060
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.