These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 24947801)

  • 1. Decisive influence of substitution positions in molecular self-assembly.
    Neff JL; Kittelmann M; Bechstein R; Kühnle A
    Phys Chem Chem Phys; 2014 Aug; 16(29):15437-43. PubMed ID: 24947801
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular self-assembly on an insulating surface: interplay between substrate templating and intermolecular interactions.
    Kittelmann M; Rahe P; Kühnle A
    J Phys Condens Matter; 2012 Sep; 24(35):354007. PubMed ID: 22899097
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Direct visualization of molecule deprotonation on an insulating surface.
    Kittelmann M; Rahe P; Gourdon A; Kühnle A
    ACS Nano; 2012 Aug; 6(8):7406-11. PubMed ID: 22838491
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Substrate templating upon self-assembly of hydrogen-bonded molecular networks on an insulating surface.
    Rahe P; Nimmrich M; Kühnle A
    Small; 2012 Oct; 8(19):2969-77. PubMed ID: 22777846
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tuning molecular self-assembly on bulk insulator surfaces by anchoring of the organic building blocks.
    Rahe P; Kittelmann M; Neff JL; Nimmrich M; Reichling M; Maass P; Kühnle A
    Adv Mater; 2013 Aug; 25(29):3948-56. PubMed ID: 23907708
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Controlling molecular self-assembly on an insulating surface by rationally designing an efficient anchor functionality that maintains structural flexibility.
    Hauke CM; Bechstein R; Kittelmann M; Storz C; Kilbinger AF; Rahe P; Kühnle A
    ACS Nano; 2013 Jun; 7(6):5491-8. PubMed ID: 23659365
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural investigations of self-assembled monolayers for organic electronics: results from X-ray reflectivity.
    Khassanov A; Steinrück HG; Schmaltz T; Magerl A; Halik M
    Acc Chem Res; 2015 Jul; 48(7):1901-8. PubMed ID: 26072927
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular self-assembly at nanometer scale modulated surfaces: trimesic acid on Ag(111), Cu(111) and Ag/Cu(111).
    Baviloliaei MS; Diekhöner L
    Phys Chem Chem Phys; 2014 Jun; 16(23):11265-9. PubMed ID: 24776919
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Complexity in the self-assembly of bifunctional molecules on HOPG: the influence of solvent functionality on self-assembled structures.
    Tao F; Bernasek SL
    Langmuir; 2007 Mar; 23(7):3513-22. PubMed ID: 17328563
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Supramolecular aggregation of inorganic molecules at Au(111) electrodes under a strong ionic atmosphere.
    Fu YC; Su YZ; Wu DY; Yan JW; Xie ZX; Mao BW
    J Am Chem Soc; 2009 Oct; 131(41):14728-37. PubMed ID: 19778042
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Selection of conformational states in self-assembled surface structures formed from an oligo(naphthylene-ethynylene) 3-bit binary switch.
    Ning Y; Cramer JR; Nuermaimaiti A; Svane K; Yu M; Lægsgaard E; Besenbacher F; Xue QK; Ma X; Hammer B; Gothelf KV; Linderoth TR
    J Chem Phys; 2015 Mar; 142(10):101922. PubMed ID: 25770511
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Exploring the complexity of supramolecular interactions for patterning at the liquid-solid interface.
    Mali KS; Adisoejoso J; Ghijsens E; De Cat I; De Feyter S
    Acc Chem Res; 2012 Aug; 45(8):1309-20. PubMed ID: 22612471
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular self-assembly from building blocks synthesized on a surface in ultrahigh vacuum: kinetic control and topo-chemical reactions.
    Weigelt S; Bombis C; Busse C; Knudsen MM; Gothelf KV; Laegsgaard E; Besenbacher F; Linderoth TR
    ACS Nano; 2008 Apr; 2(4):651-60. PubMed ID: 19206595
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The molecular basis of self-assembly of dendron-rod-coils into one-dimensional nanostructures.
    Zubarev ER; Sone ED; Stupp SI
    Chemistry; 2006 Sep; 12(28):7313-27. PubMed ID: 16892475
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Supramolecular self-assembly of metal-free naphthalocyanine on Au(111).
    Pham TA; Song F; Stöhr M
    Phys Chem Chem Phys; 2014 May; 16(19):8881-5. PubMed ID: 24681561
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Self-assembly of rubrene on Cu(111).
    Miwa JA; Cicoira F; Lipton-Duffin J; Perepichka DF; Santato C; Rosei F
    Nanotechnology; 2008 Oct; 19(42):424021. PubMed ID: 21832681
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular Self-Assembly Versus Surface Restructuring During Calcite Dissolution.
    Nalbach M; Klassen S; Bechstein R; Kühnle A
    Langmuir; 2016 Oct; 32(39):9975-9981. PubMed ID: 27603323
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modification of supramolecular binding motifs induced by substrate registry: formation of self-assembled macrocycles and chain-like patterns.
    Fendt LA; Stöhr M; Wintjes N; Enache M; Jung TA; Diederich F
    Chemistry; 2009 Oct; 15(42):11139-50. PubMed ID: 19760724
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Carboxylic acids: versatile building blocks and mediators for two-dimensional supramolecular self-assembly.
    Lackinger M; Heckl WM
    Langmuir; 2009 Oct; 25(19):11307-21. PubMed ID: 19453128
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chemical transformations drive complex self-assembly of uracil on close-packed coinage metal surfaces.
    Papageorgiou AC; Fischer S; Reichert J; Diller K; Blobner F; Klappenberger F; Allegretti F; Seitsonen AP; Barth JV
    ACS Nano; 2012 Mar; 6(3):2477-86. PubMed ID: 22356544
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.