BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

221 related articles for article (PubMed ID: 24947810)

  • 1. Relationships between oxygen uptake, dynamic body acceleration and heart rate in humans.
    D'silva LA; Cardew A; Qasem L; Wilson RP; Lewis MJ
    J Sports Med Phys Fitness; 2015 Oct; 55(10):1049-57. PubMed ID: 24947810
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Acceleration versus heart rate for estimating energy expenditure and speed during locomotion in animals: tests with an easy model species, Homo sapiens.
    Halsey LG; Shepard EL; Hulston CJ; Venables MC; White CR; Jeukendrup AE; Wilson RP
    Zoology (Jena); 2008; 111(3):231-41. PubMed ID: 18375107
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tri-axial dynamic acceleration as a proxy for animal energy expenditure; should we be summing values or calculating the vector?
    Qasem L; Cardew A; Wilson A; Griffiths I; Halsey LG; Shepard EL; Gleiss AC; Wilson R
    PLoS One; 2012; 7(2):e31187. PubMed ID: 22363576
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Moving towards acceleration for estimates of activity-specific metabolic rate in free-living animals: the case of the cormorant.
    Wilson RP; White CR; Quintana F; Halsey LG; Liebsch N; Martin GR; Butler PJ
    J Anim Ecol; 2006 Sep; 75(5):1081-90. PubMed ID: 16922843
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Energy expenditure estimates of the Caltrac accelerometer for running, race walking, and stepping.
    Swan PD; Byrnes WC; Haymes EM
    Br J Sports Med; 1997 Sep; 31(3):235-9. PubMed ID: 9298560
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Heart Rate-Index Estimates Oxygen Uptake, Energy Expenditure and Aerobic Fitness in Rugby Players.
    Colosio AL; Pedrinolla A; Da Lozzo G; Pogliaghi S
    J Sports Sci Med; 2018 Dec; 17(4):633-639. PubMed ID: 30479532
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Validating accelerometry estimates of energy expenditure across behaviours using heart rate data in a free-living seabird.
    Hicks O; Burthe S; Daunt F; Butler A; Bishop C; Green JA
    J Exp Biol; 2017 May; 220(Pt 10):1875-1881. PubMed ID: 28258086
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Predictive validity of three ActiGraph energy expenditure equations for children.
    Trost SG; Way R; Okely AD
    Med Sci Sports Exerc; 2006 Feb; 38(2):380-7. PubMed ID: 16531910
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Accelerometry to Estimate Energy Expenditure during Activity: Best Practice with Data Loggers.
    Halsey LG; Green JA; Wilson RP; Frappell PB
    Physiol Biochem Zool; 2009; 82(4):396-404. PubMed ID: 19018696
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Estimation of oxygen uptake during fast running using accelerometry and heart rate.
    Fudge BW; Wilson J; Easton C; Irwin L; Clark J; Haddow O; Kayser B; Pitsiladis YP
    Med Sci Sports Exerc; 2007 Jan; 39(1):192-8. PubMed ID: 17218902
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Prediction of maximum oxygen consumption from walking, jogging, or running.
    Larsen GE; George JD; Alexander JL; Fellingham GW; Aldana SG; Parcell AC
    Res Q Exerc Sport; 2002 Mar; 73(1):66-72. PubMed ID: 11926486
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The relationship between oxygen consumption and body acceleration in a range of species.
    Halsey LG; Shepard EL; Quintana F; Gomez Laich A; Green JA; Wilson RP
    Comp Biochem Physiol A Mol Integr Physiol; 2009 Feb; 152(2):197-202. PubMed ID: 18854225
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Energy expenditure comparison between walking and running in average fitness individuals.
    Wilkin LD; Cheryl A; Haddock BL
    J Strength Cond Res; 2012 Apr; 26(4):1039-44. PubMed ID: 22446673
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of the oxygen uptake slow component on the aerobic energy cost of high-intensity submaximal treadmill running in humans.
    Bernard O; Maddio F; Ouattara S; Jimenez C; Charpenet A; Melin B; Bittel J
    Eur J Appl Physiol Occup Physiol; 1998 Nov; 78(6):578-85. PubMed ID: 9840416
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Estimating oxygen uptake and energy expenditure during treadmill walking by neural network analysis of easy-to-obtain inputs.
    Beltrame T; Amelard R; Villar R; Shafiee MJ; Wong A; Hughson RL
    J Appl Physiol (1985); 2016 Nov; 121(5):1226-1233. PubMed ID: 27687561
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Predictions of maximum oxygen uptake from treadmill walking and running.
    Latin RW; Elias BA
    J Sports Med Phys Fitness; 1993 Mar; 33(1):34-9. PubMed ID: 8350605
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Oxygen uptake during recovery from intense intermittent running and prolonged walking.
    Brockman L; Berg K; Latin R
    J Sports Med Phys Fitness; 1993 Dec; 33(4):330-6. PubMed ID: 8035581
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Use of heart rate to predict energy expenditure from low to high activity levels.
    Hiilloskorpi HK; Pasanen ME; Fogelholm MG; Laukkanen RM; Mänttäri AT
    Int J Sports Med; 2003 Jul; 24(5):332-6. PubMed ID: 12868043
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The energy cost of horizontal walking and running in adolescents.
    Walker JL; Murray TD; Jackson AS; Morrow JR; Michaud TJ
    Med Sci Sports Exerc; 1999 Feb; 31(2):311-22. PubMed ID: 10063822
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Day-to-day variation in oxygen consumption and energy expenditure during submaximal treadmill walking in female adolescents.
    Wergel-Kolmert U; Wohlfart B
    Clin Physiol; 1999 Mar; 19(2):161-8. PubMed ID: 10200898
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.