These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 24948390)

  • 1. Wetting failure of hydrophilic surfaces promoted by surface roughness.
    Zhao MH; Chen XP; Wang Q
    Sci Rep; 2014 Jun; 4():5376. PubMed ID: 24948390
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Surfactant solutions and porous substrates: spreading and imbibition.
    Starov VM
    Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of Viscous Dissipative Processes on the Wetting of Textured Surfaces.
    Grewal HS; Nam Kim H; Cho IJ; Yoon ES
    Sci Rep; 2015 Sep; 5():14159. PubMed ID: 26390958
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A new methodology for measuring solid/liquid interfacial energy.
    Sarkar S; Jafari Gukeh M; Roy T; Gaikwad H; Bellussi FM; Moitra S; Megaridis CM
    J Colloid Interface Sci; 2023 Mar; 633():800-807. PubMed ID: 36493744
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modeling the Maximum Spreading of Liquid Droplets Impacting Wetting and Nonwetting Surfaces.
    Lee JB; Derome D; Guyer R; Carmeliet J
    Langmuir; 2016 Feb; 32(5):1299-308. PubMed ID: 26743317
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dynamic wetting and spreading and the role of topography.
    McHale G; Newton MI; Shirtcliffe NJ
    J Phys Condens Matter; 2009 Nov; 21(46):464122. PubMed ID: 21715886
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dynamic Wetting of Ionic Liquid Drops on Hydrophobic Microstructures.
    Aldhaleai A; Tsai PA
    Langmuir; 2022 Dec; 38(51):16073-16083. PubMed ID: 36516403
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A generalized examination of capillary force balance at contact line: On rough surfaces or in two-liquid systems.
    Fan J; De Coninck J; Wu H; Wang F
    J Colloid Interface Sci; 2021 Mar; 585():320-327. PubMed ID: 33302048
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Wetting transitions on rough surfaces revealed with captive bubble experiments. The role of surface energy.
    Moraila CL; Montes Ruiz-Cabello FJ; Cabrerizo-Vílchez M; Rodríguez-Valverde MÁ
    J Colloid Interface Sci; 2019 Mar; 539():448-456. PubMed ID: 30605814
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Wetting on fractal superhydrophobic surfaces from "core-shell" particles: a comparison of theory and experiment.
    Synytska A; Ionov L; Grundke K; Stamm M
    Langmuir; 2009 Mar; 25(5):3132-6. PubMed ID: 19437778
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Wetting transitions in adhesive surfaces of polystyrene: The petal effect.
    Jonguitud-Flores S; Yáñez-Soto B; Pérez E; Sánchez-Balderas G
    J Colloid Interface Sci; 2024 Nov; 674():178-185. PubMed ID: 38925063
    [TBL] [Abstract][Full Text] [Related]  

  • 12. VOF simulations of the contact angle dynamics during the drop spreading: standard models and a new wetting force model.
    Malgarinos I; Nikolopoulos N; Marengo M; Antonini C; Gavaises M
    Adv Colloid Interface Sci; 2014 Oct; 212():1-20. PubMed ID: 25150614
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Wetting Dynamics of Nanoparticle Dispersions: From Fully Spreading to Non-sticking and the Deposition of Nanoparticle-Laden Surface Droplets.
    Bazazi P; Hejazi SH
    ACS Appl Mater Interfaces; 2022 May; 14(17):20280-20290. PubMed ID: 35446544
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Progress in understanding wetting transitions on rough surfaces.
    Bormashenko E
    Adv Colloid Interface Sci; 2015 Aug; 222():92-103. PubMed ID: 24594103
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Wetting behaviour during evaporation and condensation of water microdroplets on superhydrophobic patterned surfaces.
    Jung YC; Bhushan B
    J Microsc; 2008 Jan; 229(Pt 1):127-40. PubMed ID: 18173651
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dynamic wetting of Newtonian and viscoelastic fluids on microstructured surfaces.
    Wang X; Yan X; Du J; Chen F; Yu F; Tao R; Wang S; Min Q
    J Colloid Interface Sci; 2023 Dec; 652(Pt B):2098-2107. PubMed ID: 37699328
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An effective medium approach to predict the apparent contact angle of drops on super-hydrophobic randomly rough surfaces.
    Bottiglione F; Carbone G
    J Phys Condens Matter; 2015 Jan; 27(1):015009. PubMed ID: 25469488
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Anisotropy in the wetting of rough surfaces.
    Chen Y; He B; Lee J; Patankar NA
    J Colloid Interface Sci; 2005 Jan; 281(2):458-64. PubMed ID: 15571703
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Does surface roughness amplify wetting?
    Malijevský A
    J Chem Phys; 2014 Nov; 141(18):184703. PubMed ID: 25399155
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Controlled drop emission by wetting properties in driven liquid filaments.
    Ledesma-Aguilar R; Nistal R; Hernández-Machado A; Pagonabarraga I
    Nat Mater; 2011 May; 10(5):367-71. PubMed ID: 21478882
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.