These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
176 related articles for article (PubMed ID: 24948448)
1. Targeting eukaryotic Rab proteins: a smart strategy for chlamydial survival and replication. Damiani MT; Gambarte Tudela J; Capmany A Cell Microbiol; 2014 Sep; 16(9):1329-38. PubMed ID: 24948448 [TBL] [Abstract][Full Text] [Related]
2. Hijacking host cell vesicular transport: New insights into the nutrient acquisition mechanism of Wenbo L; Yewei Y; Hui Z; Zhongyu L Virulence; 2024 Dec; 15(1):2351234. PubMed ID: 38773735 [No Abstract] [Full Text] [Related]
3. Reconceptualizing the chlamydial inclusion as a pathogen-specified parasitic organelle: an expanded role for Inc proteins. Moore ER; Ouellette SP Front Cell Infect Microbiol; 2014; 4():157. PubMed ID: 25401095 [TBL] [Abstract][Full Text] [Related]
4. Chlamydia trachomatis CT229 Subverts Rab GTPase-Dependent CCV Trafficking Pathways to Promote Chlamydial Infection. Faris R; Merling M; Andersen SE; Dooley CA; Hackstadt T; Weber MM Cell Rep; 2019 Mar; 26(12):3380-3390.e5. PubMed ID: 30893609 [TBL] [Abstract][Full Text] [Related]
5. The chlamydial inclusion: escape from the endocytic pathway. Fields KA; Hackstadt T Annu Rev Cell Dev Biol; 2002; 18():221-45. PubMed ID: 12142274 [TBL] [Abstract][Full Text] [Related]
6. Chlamydia trachomatis remodels stable microtubules to coordinate Golgi stack recruitment to the chlamydial inclusion surface. Al-Zeer MA; Al-Younes HM; Kerr M; Abu-Lubad M; Gonzalez E; Brinkmann V; Meyer TF Mol Microbiol; 2014 Dec; 94(6):1285-97. PubMed ID: 25315131 [TBL] [Abstract][Full Text] [Related]
7. Acquisition of nutrients by Chlamydiae: unique challenges of living in an intracellular compartment. Saka HA; Valdivia RH Curr Opin Microbiol; 2010 Feb; 13(1):4-10. PubMed ID: 20006538 [TBL] [Abstract][Full Text] [Related]
8. EphrinA2 receptor (EphA2) is an invasion and intracellular signaling receptor for Chlamydia trachomatis. Subbarayal P; Karunakaran K; Winkler AC; Rother M; Gonzalez E; Meyer TF; Rudel T PLoS Pathog; 2015 Apr; 11(4):e1004846. PubMed ID: 25906164 [TBL] [Abstract][Full Text] [Related]
9. Chlamydia trachomatis intercepts Golgi-derived sphingolipids through a Rab14-mediated transport required for bacterial development and replication. Capmany A; Damiani MT PLoS One; 2010 Nov; 5(11):e14084. PubMed ID: 21124879 [TBL] [Abstract][Full Text] [Related]
10. Rab11-family of interacting protein 2 associates with chlamydial inclusions through its Rab-binding domain and promotes bacterial multiplication. Leiva N; Capmany A; Damiani MT Cell Microbiol; 2013 Jan; 15(1):114-29. PubMed ID: 23006599 [TBL] [Abstract][Full Text] [Related]
14. Chlamydia trachomatis and its interaction with the cellular retromer. Banhart S; Rose L; Aeberhard L; Koch-Edelmann S; Heuer D Int J Med Microbiol; 2018 Jan; 308(1):197-205. PubMed ID: 29122514 [TBL] [Abstract][Full Text] [Related]
15. The eukaryotic signal sequence, YGRL, targets the chlamydial inclusion. Kabeiseman EJ; Cichos KH; Moore ER Front Cell Infect Microbiol; 2014; 4():129. PubMed ID: 25309881 [TBL] [Abstract][Full Text] [Related]
16. The late endocytic Rab39a GTPase regulates the interaction between multivesicular bodies and chlamydial inclusions. Gambarte Tudela J; Capmany A; Romao M; Quintero C; Miserey-Lenkei S; Raposo G; Goud B; Damiani MT J Cell Sci; 2015 Aug; 128(16):3068-81. PubMed ID: 26163492 [TBL] [Abstract][Full Text] [Related]
17. The Small Molecule H89 Inhibits Muñoz KJ; Wang K; Sheehan LM; Tan M; Sütterlin C Infect Immun; 2021 Jun; 89(7):e0072920. PubMed ID: 33820812 [No Abstract] [Full Text] [Related]