These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 24948448)

  • 21. Effector protein modulation of host cells: examples in the Chlamydia spp. arsenal.
    Betts HJ; Wolf K; Fields KA
    Curr Opin Microbiol; 2009 Feb; 12(1):81-7. PubMed ID: 19138553
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Chlamydia cell biology and pathogenesis.
    Elwell C; Mirrashidi K; Engel J
    Nat Rev Microbiol; 2016 Jun; 14(6):385-400. PubMed ID: 27108705
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Uptake of biotin by Chlamydia Spp. through the use of a bacterial transporter (BioY) and a host-cell transporter (SMVT).
    Fisher DJ; Fernández RE; Adams NE; Maurelli AT
    PLoS One; 2012; 7(9):e46052. PubMed ID: 23029384
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Trafficking from CD63-positive late endocytic multivesicular bodies is essential for intracellular development of Chlamydia trachomatis.
    Beatty WL
    J Cell Sci; 2006 Jan; 119(Pt 2):350-9. PubMed ID: 16410552
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Making connections: snapshots of chlamydial type III secretion systems in contact with host membranes.
    Dumoux M; Nans A; Saibil HR; Hayward RD
    Curr Opin Microbiol; 2015 Feb; 23():1-7. PubMed ID: 25461566
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Safe haven under constant attack-The Chlamydia-containing vacuole.
    Fischer A; Rudel T
    Cell Microbiol; 2018 Oct; 20(10):e12940. PubMed ID: 30101516
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Hijacking of Membrane Contact Sites by Intracellular Bacterial Pathogens.
    Derré I
    Adv Exp Med Biol; 2017; 997():211-223. PubMed ID: 28815533
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The STING pathway in response to chlamydial infection.
    Wen Y; Li Z
    Microb Pathog; 2020 Mar; 140():103950. PubMed ID: 31899324
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Recent insights into the mechanisms of Chlamydia entry.
    Dautry-Varsat A; Subtil A; Hackstadt T
    Cell Microbiol; 2005 Dec; 7(12):1714-22. PubMed ID: 16309458
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The chlamydial inclusion membrane as an engine of survival.
    Moulder JW
    Trends Microbiol; 1997 Aug; 5(8):305-6. PubMed ID: 9263406
    [No Abstract]   [Full Text] [Related]  

  • 31. Chlamydia effector proteins and new insights into chlamydial cellular microbiology.
    Valdivia RH
    Curr Opin Microbiol; 2008 Feb; 11(1):53-9. PubMed ID: 18299248
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Serotonin and melatonin, neurohormones for homeostasis, as novel inhibitors of infections by the intracellular parasite chlamydia.
    Rahman MA; Azuma Y; Fukunaga H; Murakami T; Sugi K; Fukushi H; Miura K; Suzuki H; Shirai M
    J Antimicrob Chemother; 2005 Nov; 56(5):861-8. PubMed ID: 16172105
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The molecular biology and diagnostics of Chlamydia trachomatis.
    Birkelund S
    Dan Med Bull; 1992 Aug; 39(4):304-20. PubMed ID: 1526183
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Akt/AS160 Signaling Pathway Inhibition Impairs Infection by Decreasing Rab14-Controlled Sphingolipids Delivery to Chlamydial Inclusions.
    Capmany A; Gambarte Tudela J; Alonso Bivou M; Damiani MT
    Front Microbiol; 2019; 10():666. PubMed ID: 31001235
    [No Abstract]   [Full Text] [Related]  

  • 35. The hypothetical protein CT813 is localized in the Chlamydia trachomatis inclusion membrane and is immunogenic in women urogenitally infected with C. trachomatis.
    Chen C; Chen D; Sharma J; Cheng W; Zhong Y; Liu K; Jensen J; Shain R; Arulanandam B; Zhong G
    Infect Immun; 2006 Aug; 74(8):4826-40. PubMed ID: 16861671
    [TBL] [Abstract][Full Text] [Related]  

  • 36. [Early events in chlamydial infection of host cells].
    Israeli E; Friedman M
    Harefuah; 2004 Sep; 143(9):669-75, 693. PubMed ID: 15521684
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Chlamydia--host cell interactions: recent advances on bacterial entry and intracellular development.
    Dautry-Varsat A; Balañá ME; Wyplosz B
    Traffic; 2004 Aug; 5(8):561-70. PubMed ID: 15260826
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Subversion of Cell-Autonomous Host Defense by Chlamydia Infection.
    Fischer A; Rudel T
    Curr Top Microbiol Immunol; 2018; 412():81-106. PubMed ID: 27169422
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Golgi-associated Rab14, a new regulator for Chlamydia trachomatis infection outcome.
    Capmany A; Leiva N; Damiani MT
    Commun Integr Biol; 2011 Sep; 4(5):590-3. PubMed ID: 22046472
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Chlamydia trachomatis interrupts an exocytic pathway to acquire endogenously synthesized sphingomyelin in transit from the Golgi apparatus to the plasma membrane.
    Hackstadt T; Rockey DD; Heinzen RA; Scidmore MA
    EMBO J; 1996 Mar; 15(5):964-77. PubMed ID: 8605892
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.