These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Whole genome assembly of a natto production strain Bacillus subtilis natto from very short read data. Nishito Y; Osana Y; Hachiya T; Popendorf K; Toyoda A; Fujiyama A; Itaya M; Sakakibara Y BMC Genomics; 2010 Apr; 11():243. PubMed ID: 20398357 [TBL] [Abstract][Full Text] [Related]
3. Potential Probiotics Bacillus subtilis KATMIRA1933 and Bacillus amyloliquefaciens B-1895 Co-Aggregate with Clinical Isolates of Proteus mirabilis and Prevent Biofilm Formation. Algburi A; Alazzawi SA; Al-Ezzy AIA; Weeks R; Chistyakov V; Chikindas ML Probiotics Antimicrob Proteins; 2020 Dec; 12(4):1471-1483. PubMed ID: 31989448 [TBL] [Abstract][Full Text] [Related]
4. Antibacterial activity and genotypic-phenotypic characteristics of bacteriocin-producing Bacillus subtilis KKU213: potential as a probiotic strain. Khochamit N; Siripornadulsil S; Sukon P; Siripornadulsil W Microbiol Res; 2015 Jan; 170():36-50. PubMed ID: 25440998 [TBL] [Abstract][Full Text] [Related]
5. Draft Genome Sequence of Bacillus subtilis subsp. natto Strain CGMCC 2108, a High Producer of Poly-γ-Glutamic Acid. Tan S; Meng Y; Su A; Zhang C; Ren Y Genome Announc; 2016 May; 4(3):. PubMed ID: 27231363 [TBL] [Abstract][Full Text] [Related]
6. Complete nucleotide sequence of Bacillus subtilis (natto) bacteriophage PM1, a phage associated with disruption of food production. Umene K; Shiraishi A Virus Genes; 2013 Jun; 46(3):524-34. PubMed ID: 23315235 [TBL] [Abstract][Full Text] [Related]
7. SOS Response Inhibitory Properties by Potential Probiotic Formulations of Bacillus amyloliquefaciens B-1895 and Bacillus subtilis KATMIRA1933 Obtained by Solid-State Fermentation. Prazdnova EV; Mazanko MS; Bren AB; Chistyakov VA; Weeks R; Chikindas ML Curr Microbiol; 2019 Mar; 76(3):312-319. PubMed ID: 30603963 [TBL] [Abstract][Full Text] [Related]
8. The first report of antifungal lipopeptide production by a Bacillus subtilis subsp. inaquosorum strain. Knight CA; Bowman MJ; Frederick L; Day A; Lee C; Dunlap CA Microbiol Res; 2018 Nov; 216():40-46. PubMed ID: 30269855 [TBL] [Abstract][Full Text] [Related]
9. Stable and efficient delivery of DNA to Bacillus subtilis (natto) using pLS20 conjugational transfer plasmids. Itaya M; Nagasaku M; Shimada T; Ohtani N; Shiwa Y; Yoshikawa H; Kaneko S; Tomita M; Sato M FEMS Microbiol Lett; 2019 Feb; 366(4):. PubMed ID: 30726909 [TBL] [Abstract][Full Text] [Related]
11. Spores of two probiotic Bacillus species enhance cellular immunity in BALB/C mice. Gong L; Huang Q; Fu A; Wu Y; Li Y; Xu X; Huang Y; Yu D; Li W Can J Microbiol; 2018 Jan; 64(1):41-48. PubMed ID: 29078062 [TBL] [Abstract][Full Text] [Related]
12. Exploring the Potential for Fungal Antagonism and Cell Wall Attack by Schönbichler A; Díaz-Moreno SM; Srivastava V; McKee LS Front Microbiol; 2020; 11():521. PubMed ID: 32296406 [TBL] [Abstract][Full Text] [Related]
13. Oxygen-Limiting Growth Conditions and Deletion of the Transition State Regulator Protein Abrb in Bacillus subtilis 6633 Result in an Increase in Subtilosin Production and a Decrease in Subtilin Production. Stein T Probiotics Antimicrob Proteins; 2020 Jun; 12(2):725-731. PubMed ID: 30980290 [TBL] [Abstract][Full Text] [Related]
14. DNA-protection and antioxidant properties of fermentates from Bacillus amyloliquefaciens B-1895 and Bacillus subtilis KATMIRA1933. Prazdnova EV; Chistyakov VA; Churilov MN; Mazanko MS; Bren AB; Volski A; Chikindas ML Lett Appl Microbiol; 2015 Dec; 61(6):549-54. PubMed ID: 26370336 [TBL] [Abstract][Full Text] [Related]
15. Subtilosin production by two Bacillus subtilis subspecies and variance of the sbo-alb cluster. Stein T; Düsterhus S; Stroh A; Entian KD Appl Environ Microbiol; 2004 Apr; 70(4):2349-53. PubMed ID: 15066831 [TBL] [Abstract][Full Text] [Related]
16. Effects of Bacillus subtilis natto and Different Components in Culture on Rumen Fermentation and Rumen Functional Bacteria In Vitro. Sun P; Li J; Bu D; Nan X; Du H Curr Microbiol; 2016 May; 72(5):589-95. PubMed ID: 26821238 [TBL] [Abstract][Full Text] [Related]
17. Effects of Bacillus subtilis natto on performance and immune function of preweaning calves. Sun P; Wang JQ; Zhang HT J Dairy Sci; 2010 Dec; 93(12):5851-5. PubMed ID: 21094758 [TBL] [Abstract][Full Text] [Related]
18. Data on the genome analysis of the probiotic strain Hadieva GF; Lutfullin MT; Pudova DS; Akosah YA; Gogoleva NE; Shagimardanova EI; Mardanova AM; Sharipova MR Data Brief; 2019 Apr; 23():103643. PubMed ID: 30793016 [TBL] [Abstract][Full Text] [Related]
19. Effects of Bacillus subtilis natto on milk production, rumen fermentation and ruminal microbiome of dairy cows. Sun P; Wang JQ; Deng LF Animal; 2013 Feb; 7(2):216-22. PubMed ID: 23031615 [TBL] [Abstract][Full Text] [Related]
20. Method of preparation, visualization and ultrastructural analysis of a formulation of probiotic Fedorenko GM; Fedorenko AG; Chistyakov VA; Prazdnova EV; Usatov AV; Chikindas ML; Mazanko MS; Weeks R MethodsX; 2019; 6():2515-2520. PubMed ID: 31737492 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]