BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

245 related articles for article (PubMed ID: 24948833)

  • 1. Phycobilisome Mobility and Its Role in the Regulation of Light Harvesting in Red Algae.
    Kaňa R; Kotabová E; Lukeš M; Papáček S; Matonoha C; Liu LN; Prášil O; Mullineaux CW
    Plant Physiol; 2014 Aug; 165(4):1618-1631. PubMed ID: 24948833
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Photoprotective energy quenching in the red alga Porphyridium purpureum occurs at the core antenna of the photosystem II but not at its reaction center.
    Fang Y; Liu D; Jiang J; He A; Zhu R; Tian L
    J Biol Chem; 2022 Apr; 298(4):101783. PubMed ID: 35245502
    [TBL] [Abstract][Full Text] [Related]  

  • 3. State transitions or delta pH-dependent quenching of photosystem II fluorescence in red algae.
    Delphin E; Duval JC; Etienne AL; Kirilovsky D
    Biochemistry; 1996 Jul; 35(29):9435-45. PubMed ID: 8755722
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phycobilisome diffusion is required for light-state transitions in cyanobacteria.
    Joshua S; Mullineaux CW
    Plant Physiol; 2004 Aug; 135(4):2112-9. PubMed ID: 15286286
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Light-induced energetic decoupling as a mechanism for phycobilisome-related energy dissipation in red algae: a single molecule study.
    Liu LN; Elmalk AT; Aartsma TJ; Thomas JC; Lamers GE; Zhou BC; Zhang YZ
    PLoS One; 2008 Sep; 3(9):e3134. PubMed ID: 18769542
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structure and organization of phycobilisomes on membranes of the red alga Porphyridium cruentum.
    Arteni AA; Liu LN; Aartsma TJ; Zhang YZ; Zhou BC; Boekema EJ
    Photosynth Res; 2008; 95(2-3):169-74. PubMed ID: 17922299
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification of multiple nonphotochemical quenching processes in the extremophilic red alga Cyanidioschyzon merolae.
    Chiang YH; Huang YJ; Fu HY
    Photosynth Res; 2022 Nov; 154(2):125-141. PubMed ID: 36155877
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Diffusion of phycobilisomes on the thylakoid membranes of the cyanobacterium Synechococcus 7942. Effects of phycobilisome size, temperature, and membrane lipid composition.
    Sarcina M; Tobin MJ; Mullineaux CW
    J Biol Chem; 2001 Dec; 276(50):46830-4. PubMed ID: 11590154
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The composition and structure of photosystem I-associated antenna from Cyanidioschyzon merolae.
    Busch A; Nield J; Hippler M
    Plant J; 2010 Jun; 62(5):886-97. PubMed ID: 20230507
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Subcellular localization of ferredoxin-NADP(+) oxidoreductase in phycobilisome retaining oxygenic photosysnthetic organisms.
    Morsy FM; Nakajima M; Yoshida T; Fujiwara T; Sakamoto T; Wada K
    Photosynth Res; 2008 Jan; 95(1):73-85. PubMed ID: 17828614
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Expansion of phycobilisome linker gene families in mesophilic red algae.
    Lee J; Kim D; Bhattacharya D; Yoon HS
    Nat Commun; 2019 Oct; 10(1):4823. PubMed ID: 31645564
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The phycobilisome, a light-harvesting complex responsive to environmental conditions.
    Grossman AR; Schaefer MR; Chiang GG; Collier JL
    Microbiol Rev; 1993 Sep; 57(3):725-49. PubMed ID: 8246846
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Supramolecular architecture of photosynthetic membrane in red algae in response to nitrogen starvation.
    Zhao LS; Su HN; Li K; Xie BB; Liu LN; Zhang XY; Chen XL; Huang F; Zhou BC; Zhang YZ
    Biochim Biophys Acta; 2016 Nov; 1857(11):1751-1758. PubMed ID: 27528560
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Core substructure of the hemiellipsoidal phycobilisome from the red alga Porphyridium cruentum.
    Redecker D; Wehrmeyer W; Reuter W
    Eur J Cell Biol; 1993 Dec; 62(2):442-50. PubMed ID: 7925499
    [TBL] [Abstract][Full Text] [Related]  

  • 15. FRAP analysis on red alga reveals the fluorescence recovery is ascribed to intrinsic photoprocesses of phycobilisomes than large-scale diffusion.
    Liu LN; Aartsma TJ; Thomas JC; Zhou BC; Zhang YZ
    PLoS One; 2009; 4(4):e5295. PubMed ID: 19381335
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Growth under Red Light Enhances Photosystem II Relative to Photosystem I and Phycobilisomes in the Red Alga Porphyridium cruentum.
    Cunningham FX; Dennenberg RJ; Jursinic PA; Gantt E
    Plant Physiol; 1990 Jul; 93(3):888-95. PubMed ID: 16667597
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Scaffolding proteins guide the evolution of algal light harvesting antennas.
    Rathbone HW; Michie KA; Landsberg MJ; Green BR; Curmi PMG
    Nat Commun; 2021 Mar; 12(1):1890. PubMed ID: 33767155
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biliproteins and phycobilisomes from cyanobacteria and red algae at the extremes of habitat.
    Samsonoff WA; MacColl R
    Arch Microbiol; 2001 Dec; 176(6):400-5. PubMed ID: 11734882
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Far-red light-regulated efficient energy transfer from phycobilisomes to photosystem I in the red microalga Galdieria sulphuraria and photosystems-related heterogeneity of phycobilisome population.
    Stadnichuk IN; Bulychev AA; Lukashev EP; Sinetova MP; Khristin MS; Johnson MP; Ruban AV
    Biochim Biophys Acta; 2011 Feb; 1807(2):227-35. PubMed ID: 21036140
    [TBL] [Abstract][Full Text] [Related]  

  • 20. How can Phycobilisome, the unique light harvesting system in certain algae working highly efficiently: The connection in between structures and functions.
    Liu R; Zhen ZH; Li W; Ge B; Qin S
    Prog Biophys Mol Biol; 2024 Jan; 186():39-52. PubMed ID: 38030044
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.