These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 24949267)

  • 1. Conversion of orange peel to L-galactonic acid in a consolidated process using engineered strains of Aspergillus niger.
    Kuivanen J; Dantas H; Mojzita D; Mallmann E; Biz A; Krieger N; Mitchell D; Richard P
    AMB Express; 2014; 4():33. PubMed ID: 24949267
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Engineering filamentous fungi for conversion of D-galacturonic acid to L-galactonic acid.
    Kuivanen J; Mojzita D; Wang Y; Hilditch S; Penttilä M; Richard P; Wiebe MG
    Appl Environ Microbiol; 2012 Dec; 78(24):8676-83. PubMed ID: 23042175
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Metabolic engineering of the fungal D-galacturonate pathway for L-ascorbic acid production.
    Kuivanen J; Penttilä M; Richard P
    Microb Cell Fact; 2015 Jan; 14():2. PubMed ID: 25566698
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Engineering Saccharomyces cerevisiae for co-utilization of D-galacturonic acid and D-glucose from citrus peel waste.
    Protzko RJ; Latimer LN; Martinho Z; de Reus E; Seibert T; Benz JP; Dueber JE
    Nat Commun; 2018 Nov; 9(1):5059. PubMed ID: 30498222
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Submerged citric acid fermentation on orange peel autohydrolysate.
    Rivas B; Torrado A; Torre P; Converti A; Domínguez JM
    J Agric Food Chem; 2008 Apr; 56(7):2380-7. PubMed ID: 18321055
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Engineering Aspergillus niger for galactaric acid production: elimination of galactaric acid catabolism by using RNA sequencing and CRISPR/Cas9.
    Kuivanen J; Wang YJ; Richard P
    Microb Cell Fact; 2016 Dec; 15(1):210. PubMed ID: 27955649
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Engineering a filamentous fungus for L-rhamnose extraction.
    Kuivanen J; Richard P
    AMB Express; 2016 Mar; 6(1):27. PubMed ID: 27033543
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Saccharification of orange peel wastes with crude enzymes from new isolated Aspergillus japonicus PJ01.
    Li PJ; Xia JL; Nie ZY; Shan Y
    Bioprocess Biosyst Eng; 2016 Mar; 39(3):485-92. PubMed ID: 26718204
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bioconversion of D-galacturonate to keto-deoxy-L-galactonate (3-deoxy-L-threo-hex-2-ulosonate) using filamentous fungi.
    Wiebe MG; Mojzita D; Hilditch S; Ruohonen L; Penttilä M
    BMC Biotechnol; 2010 Aug; 10():63. PubMed ID: 20796274
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optimization of fermentation conditions of pectin production from Aspergillus terreus and its partial characterization.
    Liu Z; Yao L; Fan C
    Carbohydr Polym; 2015 Dec; 134():627-34. PubMed ID: 26428166
    [TBL] [Abstract][Full Text] [Related]  

  • 11. W361R mutation in GaaR, the regulator of D-galacturonic acid-responsive genes, leads to constitutive production of pectinases in Aspergillus niger.
    Alazi E; Niu J; Otto SB; Arentshorst M; Pham TTM; Tsang A; Ram AFJ
    Microbiologyopen; 2019 May; 8(5):e00732. PubMed ID: 30298571
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Overexpression of the Aspergillus niger GatA transporter leads to preferential use of D-galacturonic acid over D-xylose.
    Sloothaak J; Schilders M; Schaap PJ; de Graaff LH
    AMB Express; 2014; 4():66. PubMed ID: 25177540
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Succinic acid production from orange peel and wheat straw by batch fermentations of Fibrobacter succinogenes S85.
    Li Q; Siles JA; Thompson IP
    Appl Microbiol Biotechnol; 2010 Oct; 88(3):671-8. PubMed ID: 20645087
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pomegranate peel waste: a new substrate for citric acid production by Aspergillus niger in solid-state fermentation under non-aseptic conditions.
    Roukas T; Kotzekidou P
    Environ Sci Pollut Res Int; 2020 Apr; 27(12):13105-13113. PubMed ID: 32016865
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Engineering marine fungi for conversion of D-galacturonic acid to mucic acid.
    Vidgren V; Halinen S; Tamminen A; Olenius S; Wiebe MG
    Microb Cell Fact; 2020 Jul; 19(1):156. PubMed ID: 32736636
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fermentation of orange peel hydrolysates by ethanologenic Escherichia coli. Effects of nutritional supplements.
    Grohmann K; Cameron RG; Buslig BS
    Appl Biochem Biotechnol; 1996; 57-58():383-8. PubMed ID: 8669905
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optimization and characterization of oligosaccharides production from citrus peel waste resource using Aspergillus niger 1805.
    Tan H; Yin H
    J Microbiol Methods; 2020 Feb; 169():105809. PubMed ID: 31857142
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparative evaluation of Aspergillus niger strains for endogenous pectin-depolymerization capacity and suitability for D-galacturonic acid production.
    Schäfer D; Schmitz K; Weuster-Botz D; Benz JP
    Bioprocess Biosyst Eng; 2020 Sep; 43(9):1549-1560. PubMed ID: 32328731
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pectin lyase from Aspergillus giganteus: comparative study of productivity of submerged fermentation on citrus pectin and orange waste.
    Pedrolli DB; Carmona EC
    Prikl Biokhim Mikrobiol; 2009; 45(6):677-83. PubMed ID: 20067152
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Recent advances in the biological valorization of citrus peel waste into fuels and chemicals.
    Jeong D; Park H; Jang BK; Ju Y; Shin MH; Oh EJ; Lee EJ; Kim SR
    Bioresour Technol; 2021 Mar; 323():124603. PubMed ID: 33406467
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.