These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 24949633)

  • 1. Validation of airway wall measurements by optical coherence tomography in porcine airways.
    Lee AM; Kirby M; Ohtani K; Candido T; Shalansky R; MacAulay C; English J; Finley R; Lam S; Coxson HO; Lane P
    PLoS One; 2014; 9(6):e100145. PubMed ID: 24949633
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optical coherence tomography for identification and quantification of human airway wall layers.
    d'Hooghe JNS; Goorsenberg AWM; de Bruin DM; Roelofs JJTH; Annema JT; Bonta PI
    PLoS One; 2017; 12(10):e0184145. PubMed ID: 28981500
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optical frequency domain imaging of ex vivo pulmonary resection specimens: obtaining one to one image to histopathology correlation.
    Hariri LP; Applegate MB; Mino-Kenudson M; Mark EJ; Bouma BE; Tearney GJ; Suter MJ
    J Vis Exp; 2013 Jan; (71):. PubMed ID: 23381470
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Real-time subglottic stenosis imaging using optical coherence tomography in the rabbit.
    Lin JL; Yau AY; Boyd J; Hamamoto A; Su E; Tracy L; Heidari AE; Wang AH; Ahuja G; Chen Z; Wong BJ
    JAMA Otolaryngol Head Neck Surg; 2013 May; 139(5):502-9. PubMed ID: 23681033
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Catheter-based intraluminal optical coherence tomography (OCT) of the ureter: ex-vivo correlation with histology in porcine specimens.
    Mueller-Lisse UL; Meissner OA; Babaryka G; Bauer M; Eibel R; Stief CG; Reiser MF; Mueller-Lisse UG
    Eur Radiol; 2006 Oct; 16(10):2259-64. PubMed ID: 16572332
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantification of smooth muscle in human airways by polarization-sensitive optical coherence tomography requires correction for perichondrium.
    Hackmann MJ; Cairncross A; Elliot JG; Mulrennan S; Nilsen K; Thompson BR; Li Q; Karnowski K; Sampson DD; McLaughlin RA; Cense B; James AL; Noble PB
    Am J Physiol Lung Cell Mol Physiol; 2024 Mar; 326(3):L393-L408. PubMed ID: 38261720
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification of the layered morphology of the esophageal wall by optical coherence tomography.
    Yokosawa S; Koike T; Kitagawa Y; Hatta W; Uno K; Abe Y; Iijima K; Imatani A; Ohara S; Shimosegawa T
    World J Gastroenterol; 2009 Sep; 15(35):4402-9. PubMed ID: 19764091
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Software development to optimize the minimal detectable difference in human airway images captured using optical coherence tomography.
    Peters CM; Peters RC; Lee AD; Lane P; Lam S; Sin DD; McKenzie DC; Sheel AW
    Clin Physiol Funct Imaging; 2022 Sep; 42(5):308-319. PubMed ID: 35522086
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Deep Learning-Based Segmentation of Airway Morphology from Endobronchial Optical Coherence Tomography.
    Zhou ZQ; Guo ZY; Zhong CH; Qiu HQ; Chen Y; Rao WY; Chen XB; Wu HK; Tang CL; Su ZQ; Li SY
    Respiration; 2023; 102(3):227-236. PubMed ID: 36657427
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Use of optical coherence tomography in delineating airways microstructure: comparison of OCT images to histopathological sections.
    Yang Y; Whiteman S; Gey van Pittius D; He Y; Wang RK; Spiteri MA
    Phys Med Biol; 2004 Apr; 49(7):1247-55. PubMed ID: 15128202
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Airway wall thickness assessed using computed tomography and optical coherence tomography.
    Coxson HO; Quiney B; Sin DD; Xing L; McWilliams AM; Mayo JR; Lam S
    Am J Respir Crit Care Med; 2008 Jun; 177(11):1201-6. PubMed ID: 18310475
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Visualization and Validation of The Microstructures in The Airway Wall in vivo Using Diffractive Optical Coherence Tomography.
    Thiboutot J; Yuan W; Park HC; Li D; Loube J; Mitzner W; Yarmus L; Li X; Brown RH
    Acad Radiol; 2022 Nov; 29(11):1623-1630. PubMed ID: 35282990
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Validation of human small airway measurements using endobronchial optical coherence tomography.
    Chen Y; Ding M; Guan WJ; Wang W; Luo WZ; Zhong CH; Jiang M; Jiang JH; Gu YY; Li SY; Zhong NS
    Respir Med; 2015 Nov; 109(11):1446-53. PubMed ID: 26427628
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Airway narrowing assessed by anatomical optical coherence tomography in vitro: dynamic airway wall morphology and function.
    Noble PB; West AR; McLaughlin RA; Armstrong JJ; Becker S; McFawn PK; Williamson JP; Eastwood PR; Hillman DR; Sampson DD; Mitchell HW
    J Appl Physiol (1985); 2010 Feb; 108(2):401-11. PubMed ID: 19910337
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Coregistered autofluorescence-optical coherence tomography imaging of human lung sections.
    Pahlevaninezhad H; Lee AM; Lam S; MacAulay C; Lane PM
    J Biomed Opt; 2014 Mar; 19(3):36022. PubMed ID: 24687614
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Determination of characteristics of degenerative joint disease using optical coherence tomography and polarization sensitive optical coherence tomography.
    Xie T; Guo S; Zhang J; Chen Z; Peavy GM
    Lasers Surg Med; 2006 Oct; 38(9):852-65. PubMed ID: 16998913
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Validation of two-dimensional and three-dimensional measurements of subpleural alveolar size parameters by optical coherence tomography.
    Unglert CI; Warger WC; Hostens J; Namati E; Birngruber R; Bouma BE; Tearney GJ
    J Biomed Opt; 2012 Dec; 17(12):126015. PubMed ID: 23235834
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A novel approach for quantitative analysis of intracoronary optical coherence tomography: high inter-observer agreement with computer-assisted contour detection.
    Tanimoto S; Rodriguez-Granillo G; Barlis P; de Winter S; Bruining N; Hamers R; Knappen M; Verheye S; Serruys PW; Regar E
    Catheter Cardiovasc Interv; 2008 Aug; 72(2):228-35. PubMed ID: 18324698
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparative study of optical coherence tomograph and histological images of eustachian tube nasopharyngeal region and adjacent structures in vivo and ex-vivo miniature pigs.
    Sun XM; Xiao ZW; Luo JQ; Gu QY; Zhang HQ; Li BL; Zhuang SM; Zhang GP
    Biomed Eng Online; 2023 May; 22(1):46. PubMed ID: 37179353
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Predicted and measured retinal nerve fiber layer thickness from time-domain optical coherence tomography compared with spectral-domain optical coherence tomography.
    Schrems WA; Schrems-Hoesl LM; Bendschneider D; Mardin CY; Laemmer R; Kruse FE; Horn FK
    JAMA Ophthalmol; 2015 Oct; 133(10):1135-43. PubMed ID: 26225533
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.