These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 24949897)

  • 1. Periodic table-based descriptors to encode cytotoxicity profile of metal oxide nanoparticles: a mechanistic QSTR approach.
    Kar S; Gajewicz A; Puzyn T; Roy K; Leszczynski J
    Ecotoxicol Environ Saf; 2014 Sep; 107():162-9. PubMed ID: 24949897
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modeling and mechanistic understanding of cytotoxicity of metal oxide nanoparticles (MeOxNPs) to
    Roy J; Roy K
    Nanotoxicology; 2022 Mar; 16(2):152-164. PubMed ID: 35166631
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multi-target QSTR modeling for simultaneous prediction of multiple toxicity endpoints of nano-metal oxides.
    Basant N; Gupta S
    Nanotoxicology; 2017 Apr; 11(3):339-350. PubMed ID: 28277981
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Using experimental data of Escherichia coli to develop a QSAR model for predicting the photo-induced cytotoxicity of metal oxide nanoparticles.
    Pathakoti K; Huang MJ; Watts JD; He X; Hwang HM
    J Photochem Photobiol B; 2014 Jan; 130():234-40. PubMed ID: 24362319
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Use of metal/metal oxide spherical cluster and hydroxyl metal coordination complex for descriptor calculation in development of nanoparticle cytotoxicity classification model.
    Shin HK; Kim KY; Park JW; No KT
    SAR QSAR Environ Res; 2017 Nov; 28(11):875-888. PubMed ID: 29189078
    [TBL] [Abstract][Full Text] [Related]  

  • 6.
    Kar S; Pathakoti K; Leszczynska D; Tchounwou PB; Leszczynski J
    Nanotoxicology; 2022 Jun; 16(5):566-579. PubMed ID: 36149909
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The way to cover prediction for cytotoxicity for all existing nano-sized metal oxides by using neural network method.
    Fjodorova N; Novic M; Gajewicz A; Rasulev B
    Nanotoxicology; 2017 May; 11(4):475-483. PubMed ID: 28330416
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Risk assessment of heterogeneous TiO
    Roy J; Ojha PK; Roy K
    Nanotoxicology; 2019 Jun; 13(5):701-716. PubMed ID: 30938199
    [TBL] [Abstract][Full Text] [Related]  

  • 9. From basic physics to mechanisms of toxicity: the "liquid drop" approach applied to develop predictive classification models for toxicity of metal oxide nanoparticles.
    Sizochenko N; Rasulev B; Gajewicz A; Kuz'min V; Puzyn T; Leszczynski J
    Nanoscale; 2014 Nov; 6(22):13986-93. PubMed ID: 25317542
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Understanding mechanism governing the inflammatory potential of metal oxide nanoparticles using periodic table-based descriptors: a nano-QSAR approach.
    Roy J; Roy K
    SAR QSAR Environ Res; 2023; 34(6):459-474. PubMed ID: 37350771
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optimal descriptor as a translator of eclectic data into prediction of cytotoxicity for metal oxide nanoparticles under different conditions.
    Toropova AP; Toropov AA; Rallo R; Leszczynska D; Leszczynski J
    Ecotoxicol Environ Saf; 2015 Feb; 112():39-45. PubMed ID: 25463851
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluating the cytotoxicity of a large pool of metal oxide nanoparticles to Escherichia coli: Mechanistic understanding through In Vitro and In Silico studies.
    Kar S; Pathakoti K; Tchounwou PB; Leszczynska D; Leszczynski J
    Chemosphere; 2021 Feb; 264(Pt 1):128428. PubMed ID: 33022504
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Using nano-QSAR to predict the cytotoxicity of metal oxide nanoparticles.
    Puzyn T; Rasulev B; Gajewicz A; Hu X; Dasari TP; Michalkova A; Hwang HM; Toropov A; Leszczynska D; Leszczynski J
    Nat Nanotechnol; 2011 Mar; 6(3):175-8. PubMed ID: 21317892
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In vitro evaluation of cytotoxicity of engineered metal oxide nanoparticles.
    Hu X; Cook S; Wang P; Hwang HM
    Sci Total Environ; 2009 Apr; 407(8):3070-2. PubMed ID: 19215968
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nano-QSAR modeling for predicting the cytotoxicity of metallic and metal oxide nanoparticles: A review.
    Li J; Wang C; Yue L; Chen F; Cao X; Wang Z
    Ecotoxicol Environ Saf; 2022 Sep; 243():113955. PubMed ID: 35961199
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microbial toxicity of metal oxide nanoparticles (CuO, NiO, ZnO, and Sb2O3) to Escherichia coli, Bacillus subtilis, and Streptococcus aureus.
    Baek YW; An YJ
    Sci Total Environ; 2011 Mar; 409(8):1603-8. PubMed ID: 21310463
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Correlation intensity index: mathematical modeling of cytotoxicity of metal oxide nanoparticles.
    Ahmadi S; Toropova AP; Toropov AA
    Nanotoxicology; 2020 Oct; 14(8):1118-1126. PubMed ID: 32877261
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nano-read-across predictions of toxicity of metal oxide engineered nanoparticles (MeOx ENPS) used in nanopesticides to BEAS-2B and RAW 264.7 cells.
    Roy J; Roy K
    Nanotoxicology; 2022 Jun; 16(5):629-644. PubMed ID: 36260491
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of omics techniques in the toxicity testing of nanoparticles.
    Fröhlich E
    J Nanobiotechnology; 2017 Nov; 15(1):84. PubMed ID: 29157261
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Extrapolating between toxicity endpoints of metal oxide nanoparticles: Predicting toxicity to Escherichia coli and human keratinocyte cell line (HaCaT) with Nano-QTTR.
    Kar S; Gajewicz A; Roy K; Leszczynski J; Puzyn T
    Ecotoxicol Environ Saf; 2016 Apr; 126():238-244. PubMed ID: 26773833
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.