These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 24949954)

  • 21. Seascapes and foraging success: Movement and resource discovery by a benthic marine herbivore.
    MacGregor KA; Johnson LE
    Ecol Evol; 2022 Sep; 12(9):e9243. PubMed ID: 36110878
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Sunflower sea star predation on urchins can facilitate kelp forest recovery.
    Galloway AWE; Gravem SA; Kobelt JN; Heady WN; Okamoto DK; Sivitilli DM; Saccomanno VR; Hodin J; Whippo R
    Proc Biol Sci; 2023 Feb; 290(1993):20221897. PubMed ID: 36809801
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Artificial light at night and warming impact grazing rates and gonad index of the sea urchin
    Caley A; Marzinelli EM; Byrne M; Mayer-Pinto M
    Proc Biol Sci; 2024 Apr; 291(2021):20240415. PubMed ID: 38628122
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Experiments reveal limited top-down control of key herbivores in southern California kelp forests.
    Dunn RP; Hovel KA
    Ecology; 2019 Mar; 100(3):e02625. PubMed ID: 30648729
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Drift-kelp suppresses foraging movement of overgrazing sea urchins.
    Kriegisch N; Reeves SE; Flukes EB; Johnson CR; Ling SD
    Oecologia; 2019 Jul; 190(3):665-677. PubMed ID: 31250188
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Genetic diversity of the NE Atlantic sea urchin
    Norderhaug KM; Anglès d'Auriac MB; Fagerli CW; Gundersen H; Christie H; Dahl K; Hobæk A
    Mar Biol; 2016; 163():36. PubMed ID: 26843658
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Conspecific alarm cues are a potential effective barrier to regulate foraging behavior of the sea urchin Mesocentrotus nudus.
    Chi X; Hu F; Qin C; Huang X; Sun J; Cui Z; Ding J; Yang M; Chang Y; Zhao C
    Mar Environ Res; 2021 Oct; 171():105476. PubMed ID: 34534801
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Foraging behavior of the sea urchin Mesocentrotus nudus exposed to conspecific alarm cues in various conditions.
    Chi X; Yang M; Hu F; Huang X; Yu Y; Chang Y; Wang Q; Zhao C
    Sci Rep; 2021 Aug; 11(1):15654. PubMed ID: 34341391
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Density-dependent feedbacks, hysteresis, and demography of overgrazing sea urchins.
    Ling SD; Kriegisch N; Woolley B; Reeves SE
    Ecology; 2019 Feb; 100(2):e02577. PubMed ID: 30707451
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Physiological and biochemical responses of a coralline alga and a sea urchin to climate change: Implications for herbivory.
    Rich WA; Schubert N; Schläpfer N; Carvalho VF; Horta ACL; Horta PA
    Mar Environ Res; 2018 Nov; 142():100-107. PubMed ID: 30293660
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Kelp and sea urchin settlement mediated by biotic interactions with benthic coralline algal species.
    Twist BA; Mazel F; Zaklan Duff S; Lemay MA; Pearce CM; Martone PT
    J Phycol; 2024 Apr; 60(2):363-379. PubMed ID: 38147464
    [TBL] [Abstract][Full Text] [Related]  

  • 32. More severe disturbance regimes drive the shift of a kelp forest to a sea urchin barren in south-eastern Australia.
    Carnell PE; Keough MJ
    Sci Rep; 2020 Jul; 10(1):11272. PubMed ID: 32647344
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Detrital supply suppresses deforestation to maintain healthy kelp forest ecosystems.
    Rennick M; DiFiore BP; Curtis J; Reed DC; Stier AC
    Ecology; 2022 May; 103(5):e3673. PubMed ID: 35233769
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Phase-Shift Dynamics of Sea Urchin Overgrazing on Nutrified Reefs.
    Kriegisch N; Reeves S; Johnson CR; Ling SD
    PLoS One; 2016; 11(12):e0168333. PubMed ID: 28030596
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Trophic cascades induced by lobster fishing are not ubiquitous in southern California kelp forests.
    Guenther CM; Lenihan HS; Grant LE; Lopez-Carr D; Reed DC
    PLoS One; 2012; 7(11):e49396. PubMed ID: 23209573
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Energetic context determines the effects of multiple upwelling-associated stressors on sea urchin performance.
    Murie KA; Bourdeau PE
    Sci Rep; 2021 May; 11(1):11313. PubMed ID: 34059741
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Trophic redundancy and predator size class structure drive differences in kelp forest ecosystem dynamics.
    Eisaguirre JH; Eisaguirre JM; Davis K; Carlson PM; Gaines SD; Caselle JE
    Ecology; 2020 May; 101(5):e02993. PubMed ID: 32002994
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Alterations in sea urchin (Mesocentrotus nudus) microbiota and their potential contributions to host according to barren severity.
    Park JY; Jo JW; An YJ; Lee JJ; Kim BS
    NPJ Biofilms Microbiomes; 2023 Oct; 9(1):83. PubMed ID: 37907565
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Canopy-forming seaweeds in urchin-dominated systems in eastern Canada: structuring forces or simple prey for keystone grazers?
    Blain C; Gagnon P
    PLoS One; 2014; 9(5):e98204. PubMed ID: 24859311
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Remnant kelp bed refugia and future phase-shifts under ocean acidification.
    Ling SD; Cornwall CE; Tilbrook B; Hurd CL
    PLoS One; 2020; 15(10):e0239136. PubMed ID: 33035224
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.