These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 24949954)

  • 41. Sea urchin repelling Tannin- Fe
    Kim S; Jung SM; Jung S; Shin HW; Hwang DS
    Chemosphere; 2021 Jan; 263():128276. PubMed ID: 33297220
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Trans-Arctic vicariance in
    Addison JA; Kim J
    PeerJ; 2022; 10():e13930. PubMed ID: 36164602
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Modeling effects of climate change and phase shifts on detrital production of a kelp bed.
    Krumhansl KA; Lauzon-Guay JS; Scheibling RE
    Ecology; 2014 Mar; 95(3):763-74. PubMed ID: 24804459
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Large-scale, multidecade monitoring data from kelp forest ecosystems in California and Oregon (USA).
    Malone DP; Davis K; Lonhart SI; Parsons-Field A; Caselle JE; Carr MH
    Ecology; 2022 May; 103(5):e3630. PubMed ID: 35048367
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Ocean warming and tropical invaders erode the performance of a key herbivore.
    Yeruham E; Shpigel M; Abelson A; Rilov G
    Ecology; 2020 Feb; 101(2):e02925. PubMed ID: 31660585
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Use of a free ocean CO₂ enrichment (FOCE) system to evaluate the effects of ocean acidification on the foraging behavior of a deep-sea urchin.
    Barry JP; Lovera C; Buck KR; Peltzer ET; Taylor JR; Walz P; Whaling PJ; Brewer PG
    Environ Sci Technol; 2014 Aug; 48(16):9890-7. PubMed ID: 25051305
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Experimental evaluation of the anti-attachment effect of microalgal mats on grazing activity of the sea urchin Strongylocentrotus nudus in oscillating flows.
    Kawamata S
    J Exp Biol; 2012 May; 215(Pt 9):1464-71. PubMed ID: 22496282
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Interactions between sea urchin grazing and prey diversity on temperate rocky reef communities.
    Byrnes JE; Cardinale BJ; Reed DC
    Ecology; 2013 Jul; 94(7):1636-46. PubMed ID: 23951723
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Exploitation and recovery of a sea urchin predator has implications for the resilience of southern California kelp forests.
    Hamilton SL; Caselle JE
    Proc Biol Sci; 2015 Jan; 282(1799):20141817. PubMed ID: 25500572
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Kelp and sea urchin settlement mediated by biotic interactions with benthic coralline algal species.
    Twist BA; Mazel F; Zaklan Duff S; Lemay MA; Pearce CM; Martone PT
    J Phycol; 2024 Apr; 60(2):363-379. PubMed ID: 38147464
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Indirect food web interactions: sea otters and kelp forest fishes in the Aleutian archipelago.
    Reisewitz SE; Estes JA; Simenstad CA
    Oecologia; 2006 Jan; 146(4):623-31. PubMed ID: 16193296
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Long-term study of behaviors of two cohabiting sea urchin species,
    Zhadan PM; Vaschenko MA
    PeerJ; 2019; 7():e8087. PubMed ID: 31772840
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Decline in Kelp in West Europe and Climate.
    Raybaud V; Beaugrand G; Goberville E; Delebecq G; Destombe C; Valero M; Davoult D; Morin P; Gevaert F
    PLoS One; 2013; 8(6):e66044. PubMed ID: 23840397
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Ocean warming and species range shifts affect rates of ecosystem functioning by altering consumer-resource interactions.
    Gilson AR; Smale DA; O'Connor N
    Ecology; 2021 May; 102(5):e03341. PubMed ID: 33709407
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Kelp forests at the end of the earth: 45 years later.
    Friedlander AM; Ballesteros E; Bell TW; Caselle JE; Campagna C; Goodell W; Hüne M; Muñoz A; Salinas-de-León P; Sala E; Dayton PK
    PLoS One; 2020; 15(3):e0229259. PubMed ID: 32160219
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Predation cues rather than resource availability promote cryptic behaviour in a habitat-forming sea urchin.
    Spyksma AJ; Taylor RB; Shears NT
    Oecologia; 2017 Mar; 183(3):821-829. PubMed ID: 28091726
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Synchrony in dynamics of giant kelp forests is driven by both local recruitment and regional environmental controls.
    Cavanaugh KC; Kendall BE; Siegel DA; Reed DC; Alberto F; Assis J
    Ecology; 2013 Feb; 94(2):499-509. PubMed ID: 23691668
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Winter oceanographic conditions predict summer bull kelp canopy cover in northern California.
    García-Reyes M; Thompson SA; Rogers-Bennett L; Sydeman WJ
    PLoS One; 2022; 17(5):e0267737. PubMed ID: 35511813
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Behavioral responses across a mosaic of ecosystem states restructure a sea otter-urchin trophic cascade.
    Smith JG; Tomoleoni J; Staedler M; Lyon S; Fujii J; Tinker MT
    Proc Natl Acad Sci U S A; 2021 Mar; 118(11):. PubMed ID: 33836567
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Detached kelps from distant sources are a food subsidy for sea urchins.
    Vanderklift MA; Wernberg T
    Oecologia; 2008 Aug; 157(2):327-35. PubMed ID: 18491144
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.