BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

295 related articles for article (PubMed ID: 24950305)

  • 1. Computational analysis of nitric oxide biotransport to red blood cell in the presence of free hemoglobin and NO donor.
    Deonikar P; Abu-Soud HM; Kavdia M
    Microvasc Res; 2014 Sep; 95():15-25. PubMed ID: 24950305
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Erythrocyte consumption of nitric oxide: competition experiment and model analysis.
    Vaughn MW; Huang KT; Kuo L; Liao JC
    Nitric Oxide; 2001 Feb; 5(1):18-31. PubMed ID: 11178933
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An integrated computational and experimental model of nitric oxide-red blood cell interactions.
    Deonikar P; Kavdia M
    Ann Biomed Eng; 2010 Feb; 38(2):357-70. PubMed ID: 19847651
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Contribution of membrane permeability and unstirred layer diffusion to nitric oxide-red blood cell interaction.
    Deonikar P; Kavdia M
    J Theor Biol; 2013 Jan; 317():321-30. PubMed ID: 23116664
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Erythrocytes possess an intrinsic barrier to nitric oxide consumption.
    Vaughn MW; Huang KT; Kuo L; Liao JC
    J Biol Chem; 2000 Jan; 275(4):2342-8. PubMed ID: 10644684
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Computational analysis of nitric oxide biotransport in a microvessel influenced by red blood cells.
    Wei Y; Mu L; Tang Y; Shen Z; He Y
    Microvasc Res; 2019 Sep; 125():103878. PubMed ID: 31051161
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Erythrocyte consumption of nitric oxide in presence and absence of plasma-based hemoglobin.
    Tsoukias NM; Popel AS
    Am J Physiol Heart Circ Physiol; 2002 Jun; 282(6):H2265-77. PubMed ID: 12003837
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analysis of nitric oxide consumption by erythrocytes in blood vessels using a distributed multicellular model.
    El-Farra NH; Christofides PD; Liao JC
    Ann Biomed Eng; 2003 Mar; 31(3):294-309. PubMed ID: 12680727
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Extracellular diffusion and permeability effects on NO-RBCs interactions using an experimental and theoretical model.
    Deonikar P; Kavdia M
    Microvasc Res; 2010 Jan; 79(1):47-55. PubMed ID: 19837099
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The influence of radial RBC distribution, blood velocity profiles, and glycocalyx on coupled NO/O2 transport.
    Chen X; Jaron D; Barbee KA; Buerk DG
    J Appl Physiol (1985); 2006 Feb; 100(2):482-92. PubMed ID: 16210436
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A model of nitric oxide capillary exchange.
    Tsoukias NM; Popel AS
    Microcirculation; 2003 Dec; 10(6):479-95. PubMed ID: 14745461
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Low micromolar intravascular cell-free hemoglobin concentration affects vascular NO bioavailability in sickle cell disease: a computational analysis.
    Deonikar P; Kavdia M
    J Appl Physiol (1985); 2012 Apr; 112(8):1383-92. PubMed ID: 22223452
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Impact of the FĂ„hraeus effect on NO and O2 biotransport: a computer model.
    Lamkin-Kennard KA; Jaron D; Buerk DG
    Microcirculation; 2004 Jun; 11(4):337-49. PubMed ID: 15280073
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanisms of slower nitric oxide uptake by red blood cells and other hemoglobin-containing vesicles.
    Azarov I; Liu C; Reynolds H; Tsekouras Z; Lee JS; Gladwin MT; Kim-Shapiro DB
    J Biol Chem; 2011 Sep; 286(38):33567-79. PubMed ID: 21808057
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nitric oxide uptake by erythrocytes is primarily limited by extracellular diffusion not membrane resistance.
    Liu X; Samouilov A; Lancaster JR; Zweier JL
    J Biol Chem; 2002 Jul; 277(29):26194-9. PubMed ID: 12006567
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Estimation of nitric oxide concentration in blood for different rates of generation. Evidence that intravascular nitric oxide levels are too low to exert physiological effects.
    Liu X; Yan Q; Baskerville KL; Zweier JL
    J Biol Chem; 2007 Mar; 282(12):8831-6. PubMed ID: 17267398
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A computational model for nitric oxide, nitrite and nitrate biotransport in the microcirculation: effect of reduced nitric oxide consumption by red blood cells and blood velocity.
    Deonikar P; Kavdia M
    Microvasc Res; 2010 Dec; 80(3):464-76. PubMed ID: 20888842
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nitric oxide reaction with red blood cells and hemoglobin under heterogeneous conditions.
    Han TH; Hyduke DR; Vaughn MW; Fukuto JM; Liao JC
    Proc Natl Acad Sci U S A; 2002 May; 99(11):7763-8. PubMed ID: 12032357
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nitric oxide effect on the hemoglobin-oxygen affinity.
    Stepuro TL; Zinchuk VV
    J Physiol Pharmacol; 2006 Mar; 57(1):29-38. PubMed ID: 16601313
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Renitrosylation of banked human red blood cells improves deformability and reduces adhesivity.
    Riccio DA; Zhu H; Foster MW; Huang B; Hofmann CL; Palmer GM; McMahon TJ
    Transfusion; 2015 Oct; 55(10):2452-63. PubMed ID: 26098062
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.