These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
292 related articles for article (PubMed ID: 24950305)
61. Hematocrit, hemoglobin and red blood cells are associated with vascular function and vascular structure in men. Kishimoto S; Maruhashi T; Kajikawa M; Matsui S; Hashimoto H; Takaeko Y; Harada T; Yamaji T; Han Y; Kihara Y; Chayama K; Goto C; Yusoff FM; Nakashima A; Higashi Y Sci Rep; 2020 Jul; 10(1):11467. PubMed ID: 32651430 [TBL] [Abstract][Full Text] [Related]
62. Nitric oxide attenuates normal and sickle red blood cell adherence to pulmonary endothelium. Space SL; Lane PA; Pickett CK; Weil JV Am J Hematol; 2000 Apr; 63(4):200-4. PubMed ID: 10706764 [TBL] [Abstract][Full Text] [Related]
63. Membrane-bound hemoglobin as a marker of oxidative injury in adult and neonatal red blood cells. Sharma R; Premachandra BR Biochem Med Metab Biol; 1991 Aug; 46(1):33-44. PubMed ID: 1931154 [TBL] [Abstract][Full Text] [Related]
64. Diffusion of nitric oxide and scavenging by blood in the vasculature. Butler AR; Megson IL; Wright PG Biochim Biophys Acta; 1998 Sep; 1425(1):168-76. PubMed ID: 9813307 [TBL] [Abstract][Full Text] [Related]
66. Regulation of vascular function by haemoglobin. Crawford JH; Chacko BK; Patel RP Biochem Soc Symp; 2004; (71):135-42. PubMed ID: 15777018 [TBL] [Abstract][Full Text] [Related]
67. Determinants of basal nitric oxide concentration in the renal medullary microcirculation. Zhang W; Pibulsonggram T; Edwards A Am J Physiol Renal Physiol; 2004 Dec; 287(6):F1189-203. PubMed ID: 15280161 [TBL] [Abstract][Full Text] [Related]
68. Hemoglobin redox reactions and red blood cell aging. Rifkind JM; Nagababu E Antioxid Redox Signal; 2013 Jun; 18(17):2274-83. PubMed ID: 23025272 [TBL] [Abstract][Full Text] [Related]
69. Nitric oxide transport in an axisymmetric stenosis. Liu X; Fan Y; Xu XY; Deng X J R Soc Interface; 2012 Oct; 9(75):2468-78. PubMed ID: 22593099 [TBL] [Abstract][Full Text] [Related]
70. Hemoglobin, nitric oxide and molecular mechanisms of hypoxic vasodilation. Allen BW; Stamler JS; Piantadosi CA Trends Mol Med; 2009 Oct; 15(10):452-60. PubMed ID: 19781996 [TBL] [Abstract][Full Text] [Related]
72. Effect of inositol hexakisphosphate on the spectroscopic properties of the nitric oxide derivative of ferrous horse and bovine hemoglobin. Ascenzi P; Coletta M; Desideri A; Polizio F; Condò SG; Giardina B J Inorg Biochem; 1990 Oct; 40(2):157-62. PubMed ID: 1965441 [TBL] [Abstract][Full Text] [Related]
73. Endothelium-derived nitric oxide production is increased by ATP released from red blood cells incubated with hydroxyurea. Lockwood SY; Erkal JL; Spence DM Nitric Oxide; 2014 Apr; 38():1-7. PubMed ID: 24530476 [TBL] [Abstract][Full Text] [Related]
74. Permeability and diffusivity of nitric oxide in human plasma and red cells. Borland C; Moggridge G; Patel R; Patel S; Zhu Q; Vuylsteke A Nitric Oxide; 2018 Aug; 78():51-59. PubMed ID: 29787802 [TBL] [Abstract][Full Text] [Related]
76. Calculations of oxygen transport by red blood cells and hemoglobin solutions in capillaries. Vadapalli A; Goldman D; Popel AS Artif Cells Blood Substit Immobil Biotechnol; 2002 May; 30(3):157-88. PubMed ID: 12066873 [TBL] [Abstract][Full Text] [Related]
77. Microspectrophotometry of nitric oxide-dependent changes in hemoglobin in single red blood cells incubated with stimulated macrophages. Tsujita K; Shiraishi T; Kakinuma K J Biochem; 1997 Aug; 122(2):264-70. PubMed ID: 9378701 [TBL] [Abstract][Full Text] [Related]
78. A kinetic study on functional impairment of nitric oxide-exposed rat erythrocytes. Maeda N; Imaizumi K; Kon K; Shiga T Environ Health Perspect; 1987 Aug; 73():171-7. PubMed ID: 3665861 [TBL] [Abstract][Full Text] [Related]
79. Analysis of nitric oxide donor effectiveness in resistance vessels. Hyduke DR; Liao JC Am J Physiol Heart Circ Physiol; 2005 May; 288(5):H2390-9. PubMed ID: 15653763 [TBL] [Abstract][Full Text] [Related]
80. Advective transport of nitric oxide in a mathematical model of the afferent arteriole. Smith KM; Moore LC; Layton HE Am J Physiol Renal Physiol; 2003 May; 284(5):F1080-96. PubMed ID: 12712988 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]